

Imprint

Published in November, 2011

Smashing Media GmbH, Freiburg, Germany

Cover Design: Ricardo Gimenes

Editing: Andrew Rogerson, Talita Telma

Proofreading: Andrew Lobo, Iris Ljesnjanin

Idea and Concept: Sven Lennartz, Vitaly Friedman

Founded in September 2006, Smashing Magazine delivers useful and
innovative information to Web designers and developers. Smashing
Magazine is a well-respected international online publication for
professional Web designers and developers. Our main goal is to support the
Web design community with useful and valuable articles and resources,
written and created by experienced designers and developers.

ISBN: 9783943075168

Version: December 23, 2011

Smashing eBook #14│Mastering jQuery │ 2

http://www.smashingmagazine.com
http://www.smashingmagazine.com

Table of Contents

Preface

Commonly Confused Bits Of jQuery

Image Manipulation With jQuery And PHP GD

Make Your Own Bookmarklets With jQuery

jQuery Plugin Checklist: Should You Use !at jQuery Plug-In?

Essential jQuery Plugin Pa"erns

!e Authors

Smashing eBook #14│Mastering jQuery │ 3

Preface
The explosion of JavaScript libraries and frameworks within the front-end
development scene has opened up the power of jQuery to a far wider
audience than ever before. What began from a necessity of front-end
developers to upgrade JavaScript basic API took a new direction of unified
implementation between browsers and to make it more compact in its
syntax. Thanks to this development, it is possible to actually apply optimized
scripts now. A script to find all links of a certain CSS class in a document and
bind an event to them requires one single line of code instead of ten. Also,
jQuery brings to the party its own API, featuring a host of functions, methods
and syntactical peculiarities.

In this Smashing eBook #14: Mastering jQuery, you will learn how to
combine JavaScript and jQuery with PHP and, specially, PHP’s GD library to
create an image manipulation tool to upload an image, then crop it and
finally save the revised version to the server. In addition, you will be able to
create your own bookmarklets, which are small JavaScript-powered
applications in link form. Typically used to extend the functionality of the
browser and to interact with Web services, bookmarklets allow you to post
onto your own WordPress or Tumblr blog, submit any selected text to
Google's search function, or modify a current CSS code within a browser ―
just to cite a few!

Special attention is also given to jQuery plugins, which help save time and
streamline development as well as allow programmers to avoid having to
build every component from scratch. A good plugin saves countless
development hours, whereas a bad plugin leads to bugs that must be fixed
and so takes more of of your time than actually building the component from
scratch. With the help of this eBook, you will get the best hints on how to
choose which plugins are really worth considering for your projects and
which ones you should avoid.

Smashing eBook #14│Mastering jQuery │ 4

The articles have been published on Smashing Magazine in 2010 and 2011,
and they have been carefully edited and prepared for this eBook.

We hope that you will find this eBook useful and valuable. We are looking
forward to your feedback on Twitter or via our contact form.

— Andrew Rogerson, Smashing eBook Editor

Smashing eBook #14│Mastering jQuery │ 5

http://twitter.com/smashingmag
http://twitter.com/smashingmag
http://www.smashingmagazine.com/contact/
http://www.smashingmagazine.com/contact/

Commonly Confused Bits Of jQuery

Andy Croxall

The explosion of JavaScript libraries and frameworks such as jQuery onto
the front-end development scene has opened up the power of JavaScript to
a far wider audience than ever before. It was born of the need — expressed
by a crescendo of screaming by front-end developers who were fast running
out of hair to pull out — to improve JavaScript’s somewhat primitive API, to
make up for the lack of unified implementation across browsers and to
make it more compact in its syntax.

All of which means that, unless you have some odd grudge against jQuery,
those days are gone — you can actually get stuff done now. A script to find
all links of a certain CSS class in a document and bind an event to them now
requires one line of code, not 10. To power this, jQuery brings to the party
its own API, featuring a host of functions, methods and syntactical
peculiarities. Some are confused or appear similar to each other but actually
differ in some way. This article clears up some of these confusions.

1. .parent() vs. .parents() vs. .closest()
All three of these methods are concerned with navigating upwards through
the DOM, above the element(s) returned by the selector, and matching
certain parents or, beyond them, ancestors. But they differ from each other
in ways that make them each uniquely useful.

Smashing eBook #14│Mastering jQuery │ 6

PARENT(SELECTOR)

This simply matches the one immediate parent of the element(s). It can take
a selector, which can be useful for matching the parent only in certain
situations. For example:

$('span#mySpan').parent().css('background',	
 '#f90');
$('p').parent('div.large').css('background',	
 '#f90');

The first line gives the parent of #mySpan. The second does the same for
parents of all <p> tags, provided that the parent is a div and has the class
large.

Tip: the ability to limit the reach of methods like the one in the second line is
a common feature of jQuery. The majority of DOM manipulation methods
allow you to specify a selector in this way, so it’s not unique to parent().

PARENTS(SELECTOR)

This acts in much the same way as parent(), except that it is not restricted
to just one level above the matched element(s). That is, it can return
multiple ancestors. So, for example:

$('li.nav').parents('li');	
 //for	
 each	
 LI	
 that	
 has	
 the	
 class	
 nav,	
 go	
 find	

all	
 its	
 parents/ancestors	
 that	
 are	
 also	
 LIs

This says that for each that has the class nav, return all its parents/
ancestors that are also s. This could be useful in a multi-level
navigation tree, like the following:

<ul	
 id='nav'>

 Link	
 1

 Sub	
 link	
 1.1

 Sub	
 link	
 1.2

 Sub	
 link	
 1.3

Smashing eBook #14│Mastering jQuery │ 7

 Link	
 2

 Sub	
 link	
 2.1
	

 Sub	
 link	
 2.2
	

Imagine we wanted to color every third-generation in that tree orange.
Simple:

$('#nav	
 li').each(function()	
 {

 if	
 ($(this).parents('#nav	
 li').length	
 ==	
 2)

 $(this).css('color',	
 '#f90');
});

This translates like so: for every found in #nav (hence our each()
loop), whether it’s a direct child or not, see how many parents/
ancestors are above it within #nav. If the number is two, then this
must be on level three, in which case color.

CLOSEST(SELECTOR)

This is a bit of a well-kept secret, but very useful. It works like parents(),
except that it returns only one parent/ancestor. In my experience, you’ll
normally want to check for the existence of one particular element in an
element’s ancestry, not a whole bunch of them, so I tend to use this more
than parents(). Say we wanted to know whether an element was a
descendant of another, however deep in the family tree:

Smashing eBook #14│Mastering jQuery │ 8

if	
 ($('#element1').closest('#element2').length	
 ==	
 1)

 alert("yes	
 -­‐	
 #element1	
 is	
 a	
 descendent	
 of	
 #element2!");
else

 alert("No	
 -­‐	
 #element1	
 is	
 not	
 a	
 descendent	
 of	
 #element2");

Tip: you can simulate closest() by using parents() and limiting it to
one returned element.

$($('#element1').parents('#element2').get(0)).css('background',	
 '#f90');

One quirk about closest() is that traversal starts from the element(s)
matched by the selector, not from its parent. This means that if the selector
that passed inside closest() matches the element(s) it is running on, it
will return itself. For example:

$('div#div2').closest('div').css('background',	
 '#f90');

This will turn #div2 itself orange, because closest() is looking for a
<div>, and the nearest <div> to #div2 is itself.

2. .position() vs. .offset()
These two are both concerned with reading the position of an element —
namely the first element returned by the selector. They both return an
object containing two properties, left and top, but they differ in what the
returned position is relative to.

position() calculates positioning relative to the offset parent — or, in
more understandable terms, the nearest parent or ancestor of this element
that has position: relative. If no such parent or ancestor is found, the
position is calculated relative to the document (i.e. the top-left corner of the
viewport).

Smashing eBook #14│Mastering jQuery │ 9

offset(), in contrast, always calculates positioning relative to the
document, regardless of the position attribute of the element’s parents
and ancestors.

Consider the following two <div>s:

Querying (no pun intended) the offset() and position() of
#innerDiv will return different results.

var	
 position	
 =	
 $('#innerDiv').position();
var	
 offset	
 =	
 $('#innerDiv').offset();
alert("Position:	
 left	
 =	
 "+position.left+",	
 top	
 =	
 "+position.top+"\n"+

 "Offset:	
 left	
 =	
 "+offset.left+"	
 and	
 top	
 =	
 "+offset.top
)

3. .css(‘width’) and .css(‘height’) vs. .width()
and .height()
These three, you won’t be shocked to learn, are concerned with calculating
the dimensions of an element in pixels. They both return the offset

Smashing eBook #14│Mastering jQuery │ 10

dimensions, which are the genuine dimensions of the element no matter
how stretched it is by its inner content.

They differ in the data types they return: css('width') and
css('height') return dimensions as strings, with px appended to the
end, while width() and height() return dimensions as integers.

There’s actually another little-known difference that concerns IE (quelle
surprise!), and it’s why you should avoid the css('width') and
css('height') route. It has to do with the fact that IE, when asked to
read “computed” (i.e. not implicitly set) dimensions, unhelpfully returns
auto. In jQuery core, width() and height() are based on
the .offsetWidth and .offsetHeight properties resident in every
element, which IE does read correctly.

But if you’re working on elements with dimensions implicitly set, you don’t
need to worry about that. So, if you wanted to read the width of one element
and set it on another element, you’d opt for css('width'), because the
value returned comes ready appended with ‘px’.

But if you wanted to read an element’s width() with a view to performing
a calculation on it, you’d be interested only in the figure; hence width() is
better.

Note that each of these can simulate the other with the help of an extra
line of JavaScript, like so:

var	
 width	
 =	
 $('#someElement').width();	
 //returns	
 integer
width	
 =	
 width+'px';	
 //now	
 it's	
 a	
 string	
 like	
 css('width')	
 returns
var	
 width	
 =	
 $('#someElement').css('width');	
 //returns	
 string
width	
 =	
 parseInt(width);	
 //now	
 it's	
 an	
 integer	
 like	
 width()	
 returns

Lastly, width() and height() actually have another trick up their sleeves:
they can return the dimensions of the window and document. If you try this
using the css() method, you’ll get an error.

Smashing eBook #14│Mastering jQuery │ 11

4. .click() (etc) vs. .bind() vs. .live() vs. .delegate
These are all concerned with binding events to elements. The differences lie
in what elements they bind to and how much we can influence the event
handler (or “callback”). If this sounds confusing, don’t worry. I’ll explain.

CLICK() (ETC)

It’s important to understand that bind() is the daddy of jQuery’s event-
handling API. Most tutorials deal with events with simple-looking methods,
such as click() and mouseover(), but behind the scenes these are just
the lieutenants who report back to bind().

These lieutenants, or aliases, give you quick access to bind certain event
types to the elements returned by the selector. They all take one argument:
a callback function to be executed when the event fires. For example:

$('#table	
 td	
 ').click(function()	
 {

 alert("The	
 TD	
 you	
 clicked	
 contains	
 '"+$(this).text()+"'");
});

This simply says that whenever a <div> inside #table is clicked, alert its
text content.

BIND()

We can do the same thing with bind, like so:

$('#table	
 td	
 ').bind('click',	
 function()	
 {

 alert("The	
 TD	
 you	
 clicked	
 contains	
 '"+$(this).text()+"'");
});

Note that this time, the event type is passed as the first argument to
bind(), with the callback as the second argument. Why would you use
bind() over the simpler alias functions?

Smashing eBook #14│Mastering jQuery │ 12

Very often you wouldn’t. But bind() gives you more control over what
happens in the event handler. It also allows you to bind more than one
event at a time, by space-separating them as the first argument, like so:

$('#table	
 td').bind('click	
 contextmenu',	
 function()	
 {

 alert("The	
 TD	
 you	
 clicked	
 contains	
 '"+$(this).text()+"'");
});

Now our event fires whether we’ve clicked the <td> with the left or right
button. I also mentioned that bind() gives you more control over the event
handler. How does that work? It does it by passing three arguments rather
than two, with argument two being a data object containing properties
readable to the callback, like so:

$('#table	
 td').bind('click	
 contextmenu',	
 {message:	
 'hello!'},	
 function(e){

 alert(e.data.message);
});

As you can see, we’re passing into our callback a set of variables for it to
have access to, in our case the variable message.

You might wonder why we would do this. Why not just specify any variables
we want outside the callback and have our callback read those? The answer
has to do with scope and closures. When asked to read a variable,
JavaScript starts in the immediate scope and works outwards (this is a
fundamentally different behavior to languages such as PHP). Consider the
following:

var	
 message	
 =	
 'you	
 left	
 clicked	
 a	
 TD';
$('#table	
 td').bind('click',	
 function(e)	
 {

 alert(message);
});
var	
 message	
 =	
 'you	
 right	
 clicked	
 a	
 TD';
$('#table	
 td').bind('contextmenu',	
 function(e)	
 {

 alert(message);
});

Smashing eBook #14│Mastering jQuery │ 13

No matter whether we click the <td> with the left or right mouse button, we
will be told it was the right one. This is because the variable message is
read by the alert() at the time of the event firing, not at the time the
event was bound.

If we give each event its own “version” of message at the time of binding
the events, we solve this problem.

$('#table	
 td').bind('click',	
 {message:	
 'You	
 left	
 clicked	
 a	
 TD'},	

function(e)	
 {

 alert(e.data.message);
});
$('#table	
 td').bind('contextmenu',	
 {message:	
 'You	
 right	
 clicked	
 a	
 TD'},	

function(e)	
 {

 alert(e.data.message);
});

Events bound with bind() and with the alias methods (.mouseover(),
etc) are unbound with the unbind() method.

LIVE()

This works almost exactly the same as bind() but with one crucial
difference: events are bound both to current and future elements — that is,
any elements that do not currently exist but which may be DOM-scripted
after the document is loaded.

Side note: DOM-scripting entails creating and manipulating elements in
JavaScript. Ever notice in your Facebook profile that when you “add another
employer” a field magically appears? That’s DOM-scripting, and while I won’t
get into it here, it looks broadly like this:

var	
 newDiv	
 =	
 document.createElement('div');
newDiv.appendChild(document.createTextNode('hello,	
 world!'));
$(newDiv).css({width:	
 100,	
 height:	
 100,	
 background:	
 '#f90'});
document.body.appendChild(newDiv);

Smashing eBook #14│Mastering jQuery │ 14

DELEGATE()

A shortfall of live() is that, unlike the vast majority of jQuery methods, it
cannot be used in chaining. That is, it must be used directly on a selector,
like so:

$('#myDiv	
 a').live('mouseover',	
 function()	
 {

 alert('hello');
});

But not…

$('#myDiv').children('a').live('mouseover',	
 function()	
 {

 alert('hello');
});

… which will fail, as it will if you pass direct DOM elements, such as $
(document.body).

delegate(), which was developed as part of jQuery 1.4.2, goes some way
to solving this problem by accepting as its first argument a context within
the selector. For example:

$('#myDiv').delegate('a',	
 'mouseover',	
 function()	
 {

 alert('hello');
});

Like live(), delegate() binds events both to current and future
elements. Handlers are unbound via the undelegate() method.

REAL-LIFE EXAMPLE

For a real-life example, I want to stick with DOM-scripting, because this is an
important part of any RIA (rich Internet application) built in JavaScript.

Let’s imagine a flight-booking application. The user is asked to supply the
names of all passengers travelling. Entered passengers appear as new rows

Smashing eBook #14│Mastering jQuery │ 15

in a table, #passengersTable, with two columns: “Name” (containing a
text field for the passenger) and “Delete” (containing a button to remove the
passenger’s row).

To add a new passenger (i.e. row), the user clicks a button,
#addPassenger:

$('#addPassenger').click(function()	
 {

 var	
 tr	
 =	
 document.createElement('tr');

 var	
 td1	
 =	
 document.createElement('td');

 var	
 input	
 =	
 document.createElement('input');

 input.type	
 =	
 'text';

 $(td1).append(input);

 var	
 td2	
 =	
 document.createElement('td');

 var	
 button	
 =	
 document.createElement('button');

 button.type	
 =	
 'button';

 $(button).text('delete');

 $(td2).append(button);

 $(tr).append(td1);

 $(tr).append(td2);

 $('#passengersTable	
 tbody').append(tr);
});

Notice that the event is applied to #addPassenger with click(), not
live('click'), because we know this button will exist from the
beginning.

What about the event code for the “Delete” buttons to delete a passenger?

$('#passengersTable	
 td	
 button').live('click',	
 function()	
 {

 if	
 (confirm("Are	
 you	
 sure	
 you	
 want	
 to	
 delete	
 this	
 passenger?"))

 $(this).closest('tr').remove();
});

Smashing eBook #14│Mastering jQuery │ 16

Here, we apply the event with live() because the element to which it is
being bound (i.e. the button) did not exist at runtime; it was DOM-scripted
later in the code to add a passenger.

Handlers bound with live() are unbound with the die() method.

The convenience of live() comes at a price: one of its drawbacks is that
you cannot pass an object of multiple event handlers to it. Only one handler.

5. .children() vs. .find()
Remember how the differences between parent(), parents() and
closest() really boiled down to a question of reach? So it is here.

CHILDREN()

This returns the immediate children of an element or elements returned by a
selector. As with most jQuery DOM-traversal methods, it is optionally filtered with
a selector. So, if we wanted to turn all <td>s orange in a table that contained the
word “dog”, we could use this:

$('#table	
 tr').children('td:contains(dog)').css('background',	
 '#f90');

FIND()

This works very similar to children(), only it looks at both children and
more distant descendants. It is also often a safer bet than children().

Say it’s your last day on a project. You need to write some code to hide all
<tr>s that have the class hideMe. But some developers omit <tbody>
from their table mark-up, so we need to cover all bases for the future. It
would be risky to target the <tr>s like this…

$('#table	
 tbody	
 tr.hideMe').hide();

Smashing eBook #14│Mastering jQuery │ 17

… because that would fail if there’s no <tbody>. Instead, we use find():

$('#table').find('tr.hideMe').hide();

This says that wherever you find a <tr> in #table with .hideMe, of
whatever descendancy, hide it.

6. .not() vs. !.is() vs. :not()
As you’d expect from functions named “not” and “is,” these are opposites.
But there’s more to it than that, and these two are not really equivalents.

.NOT()

not() returns elements that do not match its selector. For
example:

$('p').not('.someclass').css('color',	
 '#f90');

That turns all paragraphs that do not have the class someclass orange.

.IS()

If, on the other hand, you want to target paragraphs that do have the class
someclass, you could be forgiven for thinking that this would do it:

$('p').not('.someclass').css('color',	
 '#f90');

In fact, this would cause an error, because is() does not return elements:
it returns a boolean. It’s a testing function to see whether any of the chain
elements match the selector.

So when is is useful? Well, it’s useful for querying elements about their
properties. See the real-life example below.

Smashing eBook #14│Mastering jQuery │ 18

:NOT()

:not() is the pseudo-selector equivalent of the method .not() It
performs the same job; the only difference, as with all pseudo-selectors, is
that you can use it in the middle of a selector string, and jQuery’s string
parser will pick it up and act on it. The following example is equivalent to
our .not() example above:

$('p:not(.someclass)').css('color',	
 '#f90');

REAL-LIFE EXAMPLE

As we’ve seen, .is() is used to test, not filter, elements. Imagine we had
the following sign-up form. Required fields have the class required.

<form	
 id='myform'	
 method='post'	
 action='somewhere.htm'>

 <label>Forename	
 *

 <input	
 type='text'	
 class='required'	
 />

 <label>Surname	
 *

 <input	
 type='text'	
 class='required'	
 />

 <label>Phone	
 number

 <input	
 type='text'	
 />

 <label>Desired	
 username	
 *

 <input	
 type='text'	
 class='required'	
 />

 <input	
 type='submit'	
 value='GO'	
 />
</form>

When submitted, our script should check that no required fields were left
blank. If they were, the user should be notified and the submission halted.

$('#myform').submit(function()	
 {

Smashing eBook #14│Mastering jQuery │ 19

 if	
 ($(this).find('input').is('.required[value=]'))	
 {

 alert('Required	
 fields	
 were	
 left	
 blank!	
 Please	
 correct.');

 return	
 false;	
 //cancel	
 submit	
 event

 }
});

Here we’re not interested in returning elements to manipulate them, but
rather just in querying their existence. Our is() part of the chain merely
checks for the existence of fields within #myform that match its selector. It
returns true if it finds any, which means required fields were left blank.

7. .filter() vs. .each()
These two are concerned with iteratively visiting each element returned by
a selector and doing something to it.

.EACH()

each() loops over the elements, but it can be used in two ways. The first
and most common involves passing a callback function as its only argument,
which is also used to act on each element in succession. For example:

$('p').each(function()	
 {

 alert($(this).text());
});

This visits every <p> in our document and alerts out its contents.

But each() is more than just a method for running on selectors: it can also
be used to handle arrays and array-like objects. If you know PHP, think
foreach(). It can do this either as a method or as a core function of
jQuery. For example…

Smashing eBook #14│Mastering jQuery │ 20

var	
 myarray	
 =	
 ['one',	
 'two'];
$.each(myarray,	
 function(key,	
 val)	
 {

 alert('The	
 value	
 at	
 key	
 '+key+'	
 is	
 '+val);
});

… is the same as:

var	
 myarray	
 =	
 ['one',	
 'two'];
$(myarray).each(function(key,	
 val)	
 {

 alert('The	
 value	
 at	
 key	
 '+key+'	
 is	
 '+val);
});

That is, for each element in myarray, in our callback function its key and
value will be available to read via the key and val variables, respectively.
The first of the two examples is the better choice, since it makes little sense
to pass an array as a jQuery selector, even if it works.

One of the great things about this is that you can also iterate over objects —
but only in the first way (i.e. $.each).

jQuery is known as a DOM-manipulation and effects framework, quite
different in focus from other frameworks such as MooTools, but each() is
an example of its occasional foray into extending JavaScript’s native API.

.FILTER()

filter(), like each(), visits each element in the chain, but this time to
remove it from the chain if it doesn’t pass a certain test.

The most common application of filter() is to pass it a selector string,
just like you would specify at the start of a chain. So, the following are
equivalents:

$('p.someClass').css('color',	
 '#f90');
$('p').filter('.someclass').css('color',	
 '#f90');

Smashing eBook #14│Mastering jQuery │ 21

In which case, why would you use the second example? The answer is,
sometimes you want to affect element sets that you cannot (or don’t want to)
change. For example:

var	
 elements	
 =	
 $('#someElement	
 div	
 ul	
 li	
 a');
//hundreds	
 of	
 lines	
 later...
elements.filter('.someclass').css('color',	
 '#f90');

elements was set long ago, so we cannot — indeed may not wish to —
change the elements that return, but we might later want to filter them.

filter() really comes into its own, though, when you pass it a filter
function to which each element in the chain in turn is passed. Whether the
function returns true or false determines whether the element stays in the
chain. For example:

$('p').filter(function()	
 {

 return	
 $(this).text().indexOf('hello')	
 !=	
 -­‐1;
}).css('color',	
 '#f90')

Here, for each <p> found in the document, if it contains the string hello,
turn it orange. Otherwise, don’t affect it.

We saw above how is(), despite its name, was not the equivalent of
not(), as you might expect. Rather, use filter() or has() as the
positive equivalent of not().

Note also that unlike each(), filter() cannot be used on arrays and
objects.

REAL-LIFE EXAMPLE

You might be looking at the example above, where we turned <p>s starting
with hello orange, and thinking, “But we could do that more simply.” You’d
be right:

Smashing eBook #14│Mastering jQuery │ 22

$('p:contains(hello)').css('color',	
 '#f90')

For such a simple condition (i.e. contains hello), that’s fine. But filter()
is all about letting us perform more complex or long-winded evaluations
before deciding whether an element can stay in our chain.

Imagine we had a table of CD products with four columns: artist, title, genre
and price. Using some controls at the top of the page, the user stipulates
that they do not want to see products for which the genre is “Country” or
the price is above $10. These are two filter conditions, so we need a filter
function:

$('#productsTable	
 tbody	
 tr').filter(function()	
 {

 var	
 genre	
 =	
 $(this).children('td:nth-­‐child(3)').text();

 var	
 price	
 =	
 $(this).children('td:last').text().replace(/[^\d\.]+/g,	
 '');

 return	
 genre.toLowerCase()	
 ==	
 'country'	
 ||	
 parseInt(price)	
 >=	
 10;
}).hide();

So, for each <tr> inside the table, we evaluate columns 3 and 4 (genre and
price), respectively. We know the table has four columns, so we can target
column 4 with the :last pseudo-selector. For each product looked at, we
assign the genre and price to their own variables, just to keep things tidy.

For the price, we replace any characters that might prevent us from using
the value for mathematical calculation. If the column contained the value
$14.99 and we tried to compute that by seeing whether it matched our
condition of being below $10, we would be told that it’s not a number,
because it contains the $ sign. Hence we strip away everything that is not
number or dot.

Lastly, we return true (meaning the row will be hidden) if either of our
conditions are met (i.e. the genre is country or the price is $10 or more).

filter()

Smashing eBook #14│Mastering jQuery │ 23

8. .merge() vs. .extend()
Let’s finish with a foray into more advanced JavaScript and jQuery. We’ve
looked at positioning, DOM manipulation and other common issues, but
jQuery also provides some utilities for dealing with the native parts of
JavaScript. This is not its main focus, mind you; libraries such as MooTools
exist for this purpose.

.MERGE()

merge() allows you to merge the contents of two arrays into the first array.
This entails permanent change for the first array. It does not make a new
array; values from the second array are appended to the first:

var	
 arr1	
 =	
 ['one',	
 'two'];
var	
 arr2	
 =	
 ['three',	
 'four'];
$.merge(arr1,	
 arr2);

After this code runs, the arr1 will contain four elements, namely one, two,
three, four. arr2 is unchanged. (If you’re familiar with PHP, this function
is equivalent to array_merge().)

.EXTEND()

extend() does a similar thing, but for objects:

var	
 obj1	
 =	
 {one:	
 'un',	
 two:	
 'deux'}
var	
 obj2	
 =	
 {three:	
 'trois',	
 four:	
 'quatre'}
$.extend(obj1,	
 obj2);

extend() has a little more power to it. For one thing, you can merge more
than two objects — you can pass as many as you like. For another, it can
merge recursively. That is, if properties of objects are themselves objects,

Smashing eBook #14│Mastering jQuery │ 24

you can ensure that they are merged, too. To do this, pass true as the first
argument:

var	
 obj1	
 =	
 {one:	
 'un',	
 two:	
 'deux'}
var	
 obj2	
 =	
 {three:	
 'trois',	
 four:	
 'quatre',	
 some_others:	
 {five:	
 'cinq',	

six:	
 'six',	
 seven:	
 'sept'}}
$.extend(true,	
 obj1,	
 obj2);

Covering everything about the behaviour of JavaScript objects (and how
merge interacts with them) is beyond the scope of this article, but you can
read more here.

The difference between merge() and extend() in jQuery is not the same
as it is in MooTools. One is used to amend an existing object, the other
creates a new copy.

"ere You Have It
We’ve seen some similarities, but more often than not intricate (and
occasionally major) differences. jQuery is not a language, but it deserves to
be learned as one, and by learning it you will make better decisions about
what methods to use in what situation.

It should also be said that this article does not aim to be an exhaustive guide
to all jQuery functions available for every situation. For DOM traversal, for
example, there’s also nextUntil() and parentsUntil().

While there are strict rules these days for writing semantic and SEO-
compliant mark-up, JavaScript is still very much the playground of the
developer. No one will demand that you use click() instead of bind(),
but that’s not to say one isn’t a better choice than the other. It’s all about the
situation.

Smashing eBook #14│Mastering jQuery │ 25

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.extend/

Image Manipulation With jQuery And
PHP GD

Andy Croxall

One of the numerous advantages brought about by the explosion of jQuery
and other JavaScript libraries is the ease with which you can create
interactive tools for your site. When combined with server-side technologies
such as PHP, this puts a serious amount of power at your finger tips.

In this article, I’ll be looking at how to combine JavaScript/jQuery with PHP
and, particularly, PHP’s GD library to create an image manipulation tool to
upload an image, then crop it and finally save the revised version to the
server. Sure, there are plugins out there that you can use to do this; but this
article aims to show you what’s behind the process. You can download the
source files (updated) for reference.

We’ve all seen this sort of Web application before — Facebook, Flickr, t-
shirt-printing sites. The advantages are obvious; by including a functionality
like this, you alleviate the need to edit pictures manually from your visitors,
which has obvious drawbacks. They may not have access to or have the
necessary skills to use Photoshop, and in any case why would you want to
make the experience of your visitors more difficult?

Before You Start
For this article, you would ideally have had at least some experience
working with PHP. Not necessarily GD — I’ll run you through that part, and
GD is very friendly anyway. You should also be at least intermediate level in

Smashing eBook #14│Mastering jQuery │ 26

http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip

JavaScript, though if you’re a fast learning beginner, you should be fine as
well.

A quick word about the technologies you’ll need to work through this article.
You’ll need a PHP test server running the GD library, either on your hosting
or, if working locally, through something like XAMPP. GD has come bundled
with PHP as standard for some time, but you can confirm this by running the
phpinfo() function and verifying that it’s available on your server. Client-
side-wise you’ll need a text editor, some pictures and a copy of jQuery.

Se#ing Up "e Files
And off we go, then. Set up a working folder and create four files in it:
index.php, js.js, image_manipulation.php and css.css. index.php is the
actual webpage, js.js and css.css should be obvious, while
image_manipulation.php will store the code that handles the uploaded
image and then, later, saves the manipulated version.

In index.php, first let’s add a line of PHP to start a PHP session and call in
our image_manipulation.php file:

<!-­‐-­‐?php	
 session_start();	
 require_once	
 'image_manipulation.php';	
 ?-­‐-­‐>

After that, add in the DOCTYPE and skeleton-structure of the page (header,
body areas etc) and call in jQuery and the CSS sheet via script and link tags
respectively.

Add a directory to your folder, called imgs, which will receive the uploaded
files. If you’re working on a remote server, ensure you set the permissions
on the directory such that the script will be able to save image files in it.

First, let’s set up and apply some basic styling to the upload facility.

Smashing eBook #14│Mastering jQuery │ 27

http://www.apachefriends.org/
http://www.apachefriends.org/

"e Upload Functionality
Now to some basic HTML. Let’s add a heading and a simple form to our
page that will allow the user to upload an image and assign that image a
name:

<h1>Image	
 uploader	
 and	
 manipulator</h1>
<form	
 method="POST"	
 action="index.php"	
 enctype="multipart/form-­‐data"	

id="imgForm">

 <label	
 for="img_upload">Image	
 on	
 your	
 PC	
 to	
 upload</label>
<input	
 type="file"	
 name="img_upload"	
 id="img_upload">
	

 <label	
 for="img_name">Give	
 this	
 image	
 a	
 name</label>
<input	
 type="text"	
 name="img_name"	
 id="img_name">
<input	
 type="submit"	
 name="upload_form_submitted">
</form>

Please note that we specify enctype=’multipart/form-data’ which is
necessary whenever your form contains file upload fields.

As you can see, the form is pretty basic. It contains 3 fields: an upload field
for the image itself, a text field, so the user can give it a name and a submit
button. The submit button has a name so it can act as an identifier for our
PHP handler script which will know that the form was submitted.

Let’s add a smattering of CSS to our stylesheet:

/*	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
|	
 UPLOAD	
 FORM
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 */
#imgForm	
 {	
 border:	
 solid	
 4px	
 #ddd;	
 background:	
 #eee;	
 padding:	
 10px;	
 margin:	

30px;	
 width:	
 600px;	
 overflow:hidden;}

 #imgForm	
 label	
 {	
 float:	
 left;	
 width:	
 200px;	
 font-­‐weight:	
 bold;	
 color:	

#666;	
 clear:both;	
 padding-­‐bottom:10px;	
 }

 #imgForm	
 input	
 {	
 float:	
 left;	
 }

 #imgForm	
 input[type="submit"]	
 {clear:	
 both;	
 }

Smashing eBook #14│Mastering jQuery │ 28

 #img_upload	
 {	
 width:	
 400px;	
 }

 #img_name	
 {	
 width:	
 200px;	
 }

Now we have the basic page set up and styled. Next we need to nip into
image_manipulation.php and prepare it to receive the submitted form.
Which leads nicely on to validation…

Validating "e Form
Open up image_manipulation.php. Since we made a point above of
including it into our HTML page, we can rest assured that when it’s called
into action, it will be present in the environment.

Let’s set up a condition, so the PHP knows what task it is being asked to do.
Remember we named our submit button upload_form_submitted? PHP can
now check its existence, since the script knows that it should start handling
the form.

This is important because, as I said above, the PHP script has two jobs to
do: to handle the uploaded form and to save the manipulated image later
on. It therefore needs a technique such as this to know which role it should
be doing at any given time.

/*	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
|	
 UPLOAD	
 FORM	
 -­‐	
 validate	
 form	
 and	
 handle	
 submission
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 */
	

if	
 (isset($_POST['upload_form_submitted']))	
 {

 //code	
 to	
 validate	
 and	
 handle	
 upload	
 form	
 submission	
 here
}

So if the form was submitted, the condition resolves to true and whatever
code we put inside, it will execute. That code will be validation code.
Knowing that the form was submitted, there are now five possible obstacles
to successfully saving the file: 1) the upload field was left blank; 2) the file

Smashing eBook #14│Mastering jQuery │ 29

name field was left blank; 3) both these fields were filled in, but the file being
uploaded isn’t a valid image file; 4) an image with the desired name already
exists; 5) everything is fine, but for some reason, the server fails to save the
image, perhaps due to file permission issues. Let’s look at the code behind
picking up each of these scenarios, should any occur, then we’ll put it all
together to build our validation script.

Combined into a single validation script, the whole code looks as follows.

/*	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
|	
 UPLOAD	
 FORM	
 -­‐	
 validate	
 form	
 and	
 handle	
 submission
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 */
	

if	
 (isset($_POST['upload_form_submitted']))	
 {
	

 //error	
 scenario	
 1

 if	
 (!isset($_FILES['img_upload'])	
 ||	
 empty($_FILES['img_upload']
['name']))	
 {

 $error	
 =	
 "Error:	
 You	
 didn't	
 upload	
 a	
 file";
	

 //error	
 scenario	
 2

 }	
 else	
 if	
 (!isset($_POST['img_name'])	
 ||	
 empty($_FILES['img_upload']))	
 {

 $error	
 =	
 "Error:	
 You	
 didn't	
 specify	
 a	
 file	
 name";

 }	
 else	
 {
	

 $allowedMIMEs	
 =	
 array('image/jpeg',	
 'image/gif',	
 'image/png');

 foreach($allowedMIMEs	
 as	
 $mime)	
 {

 if	
 ($mime	
 ==	
 $_FILES['img_upload']['type'])	
 {

 $mimeSplitter	
 =	
 explode('/',	
 $mime);

 $fileExt	
 =	
 $mimeSplitter[1];

 $newPath	
 =	
 'imgs/'.$_POST['img_name'].'.'.$fileExt;

 break;

 }

 }
	

Smashing eBook #14│Mastering jQuery │ 30

 //error	
 scenario	
 3

 if	
 (file_exists($newPath))	
 {

 $error	
 =	
 "Error:	
 A	
 file	
 with	
 that	
 name	
 already	
 exists";
	

 //error	
 scenario	
 4

 }	
 else	
 if	
 (!isset($newPath))	
 {

 $error	
 =	
 'Error:	
 Invalid	
 file	
 format	
 -­‐	
 please	
 upload	
 a	
 picture	
 file';
	

 //error	
 scenario	
 5

 }	
 else	
 if	
 (!copy($_FILES['img_upload']['tmp_name'],	
 $newPath))	
 {

 $error	
 =	
 'Error:	
 Could	
 not	
 save	
 file	
 to	
 server';
	

 //...all	
 OK!

 }	
 else	
 {

 $_SESSION['newPath']	
 =	
 $newPath;

 $_SESSION['fileExt']	
 =	
 $fileExt;

 }

 }
}

There are a couple of things to note here.

$ERROR & $_SESSION['NEWPATH']

Firstly, note that I’m using a variable, $error, to log whether we hit any of the
hurdles. If no error occurs and the image is saved, we set a session variable,
$_SESSION['new_path'], to store the path to the saved image. This will
be helpful in the next step where we need to display the image and,
therefore, need to know its SRC.

I’m using a session variable rather than a simple variable, so when the time
comes for our PHP script to crop the image, we don’t have to pass it a
variable informing the script which image to use — the script will already
know the context, because it will remember this session variable. Whilst this

Smashing eBook #14│Mastering jQuery │ 31

article doesn’t concern itself deeply with security, this is a simple precaution.
Doing this means that the user can affect only the image he uploaded,
rather than, potentially, someone else’s previously-saved image — the user
is locked into manipulating only the image referenced in $error and has
no ability to enforce the PHP script to affect another image.

THE $_FILES SUPERGLOBAL

Note that even though the form was sent via POST, we access the file
upload not via the $_POST superglobal (i.e. variables in PHP which are
available in all scopes throughout a script), but via the special $_FILES
superglobal. PHP automatically assigns file fields to that, provided the form
was sent with the required enctype='multipart/form-data' attribute.
Unlike the $_POST and $_GET superglobals, the $_FILES superglobal
goes a little “deeper” and is actually a multi-dimensional array. Through this,
you can access not only the file itself but also a variety of meta data related
to it. You’ll see how we can use this information shortly. We use this meta
data in the third stage of validation above, namely checking that the file was
a valid image file. Let’s look at this code in a little more detail.

CONFIRMING THE UPLOAD IS AN IMAGE

Any time you’re allowing users to upload files to your server, you obviously
want to assume full control of precisely what sort of files you allow to be
uploaded. It should be blindingly obvious, but you don’t want people able to
upload just any file to you server – this needs to be something you control,
and tightly.

We could check by file extension – only this would be insecure. Just
because something has a .jpg extension, doesn’t mean its inner code is that
of a picture. Instead, we check by MIME-type, which is more secure (though
still not totally perfect).

Smashing eBook #14│Mastering jQuery │ 32

To this end we check the uploaded file’s MIME-type – which lives in the
‘type’ property of its array – against a white list of allowed MIME-types.

$allowedMIMEs	
 =	
 array('image/jpeg',	
 'image/gif',	
 'image/png');
foreach($allowedMIMEs	
 as	
 $mime)	
 {

 if	
 ($mime	
 ==	
 $_FILES['img_upload']['type'])	
 {

 $mimeSplitter	
 =	
 explode('/',	
 $mime);

 $fileExt	
 =	
 $mimeSplitter[1];

 $newPath	
 =	
 'imgs/'.$_POST['img_name'].'.'.$fileExt;

 break;

 }
}

If a match is found, we extract its extension and use that to build the name
we’ll use to save the file.

To extract the extension we exploit the fact that MIME-types are always in
the format something/something – i.e. we can rely on the forward slash. We
therefore ‘explode’ the string based on that delimited. Explode returns an
array of parts – in our case, two parts, the part of the MIME-type either side
of the slash. We know, therefore, that the second part of the array ([1]) is the
extension associated with the MIME-type.

Note that, if a matching MIME-type is found, we set two variables: $newPath
and $fileExt. Both of these will be important later to the PHP that actually
saves the file, but the former is also used, as you can see, by error scenario
4 as a means of detecting whether MIME look-up was successful.

SAVING THE FILE

All uploaded files are assigned a temporary home by the server until such
time as the session expires or they are moved. So saving the file means
moving the file from its temporary location to a permanent home. This is
done via the copy() function, which needs to know two rather obvious

Smashing eBook #14│Mastering jQuery │ 33

things: what’s the path to the temporary file, and what’s the path to where
we want to put it.

The answer to the first question is read from the tmp_name part of the
$_FILES superglobal. The answer to the second is the full path, including
new filename, to where you want it to live. So it is formed of the name of the
directory we set up to store images (/imgs), plus the new file name (i.e. the
value entered into the img_name field) and the extension. Let’s assign it to
its own variable, $newPath and then save the file:

$newPath	
 =	
 'imgs/'.$_POST['img_name'].'.'.$fileExt;
...
copy($_FILES['img_upload']['tmp_name'],$newPath);

Reporting Back and Moving On
What happens next depends entirely on whether an error occurred, and we
can find it out by looking up whether $error is set. If it is, we need to
communicate this error back to the user. If it’s not set, it’s time to move on
and show the image and let the user manipulate it. Add the following above
your form:

<?php	
 if	
 (isset($error))	
 echo	
 '<p	
 id="error">'.$error.'</p>';	
 ?>

If there’s an error, we’d want to show the form again. But the form is
currently set to show regardless of the situation. This needs to change, so
that it shows only if no image has been uploaded yet, i.e. if the form hasn’t
been submitted yet, or if it has but there was an error. We can check
whether an uploaded image has been saved by interrogating the
$_SESSION['newPath'] variable. Wrap your form HTML in the following
two lines of code:

Smashing eBook #14│Mastering jQuery │ 34

<?php	
 if	
 (!isset($_SESSION['newPath'])	
 ||	
 isset($_GET['true']))	
 {	
 ?>
	

<?php	
 }	
 else	
 echo	
 '<img	
 src="'.$_SESSION['newPath'].'"	
 />';	
 ?>

Now the form appears only if an uploaded image isn’t registered — i.e.
$_SESSION['newPath'] isn’t set — or if new=true is found in the URL.
(This latter part provides us with a means of letting the user start over with a
new image upload should they wish so; we’ll add a link for this in a moment).
Otherwise, the uploaded image displays (we know where it lives because
we saved its path in $_SESSION['newPath']).

This is a good time to take stock of where we are, so try it out. Upload an
image, and verify that that it displays. Assuming it does, it’s time for our
JavaScript to provide some interactivity for image manipulation.

Adding Interactivity
First, let’s extend the line we just added so that we a) give the image an ID
to reference it later on; b) call the JavaScript itself (along with jQuery); and c)
we provide a “start again” link, so the user can start over with a new upload
(if necessary). Here is the code snippet:

<?php	
 }	
 else	
 {	
 ?>

 <img	
 id="uploaded_image"	
 src="<!-­‐-­‐?php	
 echo	

$_SESSION['newPath'].'?'.rand(0,	
 100000);	
 ?-­‐-­‐>"	
 />

 <p>start	
 over	
 with	
 new	
 image
	

 <script	
 src="http://www.google.com/jsapi	
 "></script>

 <script>google.load("jquery",	
 "1.5");</script>

 <script	
 src="js.js"></script>
<!-­‐-­‐?php	
 }	
 ?-­‐-­‐>

Note that I defined an ID for the image, not a class, because it’s a unique
element, and not one of the many (this sounds obvious, but many people fail

Smashing eBook #14│Mastering jQuery │ 35

http://www.google.com/jsapi
http://www.google.com/jsapi

to observe this distinction when assigning IDs and classes). Note also, in the
image’s SRC, I’m appending a random string. This is done to force the
browser not to cache the image once we’ve cropped it (since the SRC
doesn’t change).

Open js.js and let’s add the obligatory document ready handler (DRH),
required any time you’re using freestanding jQuery (i.e. not inside a custom
function) to reference or manipulate the DOM. Put the following JavaScript
inside this DRH:

$(function()	
 {

 //	
 all	
 our	
 JS	
 code	
 will	
 go	
 here
});

We’re providing the functionality to a user to crop the image, and it of
course means allowing him to drag a box area on the image, denoting the
part he wishes to keep. Therefore, the first step is to listen for a mousedown
event on the image, the first of three events involved in a drag action
(mouse down, mouse move and then, when the box is drawn, mouse up).

var	
 dragInProgress	
 =	
 false;
	

$("#uploaded_image").mousedown(function(evt)	
 {

 dragInProgress	
 =	
 true;
});

And in similar fashion, let’s listen to the final mouseup event.
$(window).mouseup(function()	
 {

 dragInProgress	
 =	
 false;
});

Note that our mouseup event runs on window, not the image itself, since
it’s possible that the user could release the mouse button anywhere on the
page, not necessarily on the image.

Smashing eBook #14│Mastering jQuery │ 36

Note also that the mousedown event handler is prepped to receive the
event object. This object holds data about the event, and jQuery always
passes it to your event handler, whether or not it’s set up to receive it. That
object will be crucial later on in ascertaining where the mouse was when the
event fired. The mouseup event doesn’t need this, because all we care
about if is that the drag action is over and it doesn’t really matter where the
mouse is.

We’re tracking whether or not the mouse button is currently depressed in a
variable, . Why? Because, in a drag action, the middle event of the three
(see above) only applies if the first happened. That is, in a drag action, you
move the mouse whilst the mouse is down. If it’s not, our mousemove event
handler should exit. And here it is:

$("#uploaded_image").mousemove(function(evt)	
 {

 if	
 (!dragInProgress)	
 return;
});

So now our three event handlers are set up. As you can see, the
mousemove event handler exits if it discovers that the mouse button is not
currently down, as we decided above it should be.

Now let’s extend these event handlers.

This is a good time to explain how our JavaScript will be simulating the drag
action being done by the user. The trick is to create a DIV on mousedown,
and position it at the mouse cursor. Then, as the mouse moves, i.e. the
user is drawing his box, that element should resize consistently to mimic
that.

Let’s add, position and style our DIV. Before we add it, though, let’s remove
any previous such DIV, i.e. from a previous drag attempt. This ensures
there’s only ever one drag box, not several. Also, we want to log the mouse
coordinates at the time of mouse down, as we’ll need to reference these

Smashing eBook #14│Mastering jQuery │ 37

later when it comes to drawing and resizing ourDIV. Extend the mousedown
event handler to become:

$("#uploaded_image").mousedown(function(evt)	
 {

 dragInProgress	
 =	
 true;

 $("#drag_box").remove();

 $("<div>").appendTo("body").attr("id",	
 "drag_box").css({left:	

evt.clientX,	
 top:	
 evt.clientY});

 mouseDown_left	
 =	
 evt.clientX;

 mouseDown_top	
 =	
 evt.clientY;
});

Notice that we don’t prefix the three variables there with the 'var'
keyword. That would make them accessible only within the mousedown
handler, but we need to reference them later in our mousemove handler.
Ideally, we’d avoid global variables (using a namespace would be better) but
for the purpose of keeping the code in this tutorial concise, they’ll do for
now.

Notice that we obtain the coordinates of where the event took place — i.e.
where the mouse was when the mouse button was depressed — by reading
the clientX and clientY properties of the event object, and it’s those we
use to position our DIV.

Let’s style the DIV by adding the following CSS to your stylesheet.

#drag_box	
 {	
 position:	
 absolute;	
 border:	
 solid	
 1px	
 #333;	
 background:	
 #fff;	

opacity:	
 .5;	
 filter:	
 alpha(opacity=50);	
 z-­‐index:	
 10;	
 }

Now, if you upload an image and then click it, the DIV will be inserted at
your mouse position. You won’t see it yet, as it’s got width and height zero;
only when we start dragging should it become visible, but if you use Firebug
or Dragonfly to inspect it, you will see it in the DOM.

So far, so good. Our drag box functionality is almost complete. Now we just
need to make it respond to the user’s mouse movement. What’s involved

Smashing eBook #14│Mastering jQuery │ 38

here is very much what we did in the mousedown event handler when we
referenced the mouse coordinates.

The key to this part is working out what properties should be updated, and
with what values. We’ll need to change the box’s left, top, width and
height.

Sounds pretty obvious. However, it’s not as simple as it sounds. Imagine that
the box was created at coordinates 40×40 and then the user drags the
mouse to coordinates 30×30. By updating the box’s left and top properties
to 30 and 30, the position of the top left corner of the box would be correct,
but the position of its bottom right corner would not be where the
mousedown event happened. The bottom corner would be 10 pixels north
west of where it should be!

To get around this, we need to compare the mousedown coordinates with
the current mouse coordinates. That’s why in our mousedown handler, we
logged the mouse coordinates at the time of mouse down. The box’s new
CSS values will be as follows:

• left: the lower of the two clientX coordinates

• width: the difference between the two clientX coordinates

• top: the lower of the two clientY coordinates

• height: the difference between the two clientY coordinates

So let’s extend the mousemove event handler to become:

$("#uploaded_image").mousemove(function(evt)	
 {

 if	
 (!dragInProgress)	
 return;

 var	
 newLeft	
 =	
 mouseDown_left	
 <	
 evt.clientX	
 ?	
 mouseDown_left	
 :	

evt.clientX;

 var	
 newWidth	
 =	
 Math.abs(mouseDown_left	
 -­‐	
 evt.clientX);

 var	
 newTop	
 =	
 mouseDown_top	
 <	
 evt.clientY	
 ?	
 mouseDown_top	
 :	
 evt.clientY;

Smashing eBook #14│Mastering jQuery │ 39

 var	
 newHeight	
 =	
 Math.abs(mouseDown_top	
 -­‐	
 evt.clientY);

 $('#drag_box').css({left:	
 newLeft,	
 top:	
 newTop,	
 width:	
 newWidth,	
 height:	

newHeight});
});

Notice also that, to establish the new width and height, we didn't have to do
any comparison. Although we don't know, for example, which is lower out of
the mousedown left and the current mouse left, we can subtract either from
the other and counter any negative result by forcing the resultant number to
be positive via Math.abs(), i.e.

result	
 =	
 50	
 –	
 20;	
 //30
result	
 =	
 Math.abs(20	
 –	
 50);	
 //30	
 (-­‐30	
 made	
 positive)

One final, small but important thing. When Firefox and Internet Explorer
detect drag attempts on images they assume the user is trying to drag out
the image onto their desktop, or into Photoshop, or wherever. This has the
potential to interfere with our creation. The solution is to stop the event from
doing its default action. The easiest way is to return false. What's interesting,
though, is that Firefox interprets drag attempts as beginning on mouse
down, whilst IE interprets them as beginning on mouse move. So we need
to append the following, simple line to the ends of both of these functions:

return	
 false;

Try your application out now. You should have full drag box functionality.

Saving the Cropped Image
And so to the last part, saving the modified image. The plan here is simple:
we need to grab the coordinates and dimensions of the drag box, and pass
them to our PHP script which will use them to crop the image and save a
new version.

Smashing eBook #14│Mastering jQuery │ 40

GRABBING THE DRAG BOX DATA

It makes sense to grab the drag box's coordinates and dimensions in our
mouseup handler, since it denotes the end of the drag action. We could do
that with the following:

var	
 db	
 =	
 $("#drag_box");
var	
 db_data	
 =	
 {left:	
 db.offset().left,	
 top:	
 db.offset().top,	
 width:	

db.width(),	
 height:	
 db.height()};

There's a problem, though, and it has to do with the drag box's coordinates.
The coordinates we grab above are relative to the body, not the uploaded
image. So to correct this, we need to subtract the position, relative to the
body, of the image itself, from them. So let's add this instead:

var	
 db	
 =	
 $("#drag_box");
if	
 (db.width()	
 ==	
 0	
 ||	
 db.height()	
 ==	
 0	
 ||	
 db.length	
 ==	
 0)	
 return;
var	
 img_pos	
 =	
 $('#uploaded_image').offset();
var	
 db_data	
 =	
 {

 left:	
 db.offset().left	
 –	
 img_pos.left,

 top:	
 db.offset().top	
 -­‐	
 img_pos.top,

 width:	
 db.width(),

 height:	
 db.height()
};

What's happening there? We're first referencing the drag box in a local
shortcut variable, db, and then store the four pieces of data we need to
know about it, its left, top, width and height, in an object db_data.
The object isn't essential: we could use separate variables, but this
approach groups the data together under one roof and might be considered
tidier.

Note the condition on the second line, which guards against simple,
dragless clicks to the image being interpreted as crop attempts. In these
cases, we return, i.e. do nothing.

Smashing eBook #14│Mastering jQuery │ 41

Note also that we get the left and top coordinates via jQuery's offset()
method. This returns the dimensions of an object relative to the document,
rather than relative to any parent or ancestor with relative positioning, which
is what position() or css('top/right/bottom/left') would
return. However, since we appended our drag box directly to the body, all of
these three techniques would work the same in our case. Equally, we get
the width and height via the width() and height() methods, rather than
via css('width/height'), as the former omits 'px' from the returned
values. Since our PHP script will be using these coordinates in a
mathematical fashion, this is the more suitable option.

For more information on the distinction between all these methods, see my
previous article on SmashingMag, Commonly Confused Bits of jQuery.

Let's now throw out a confirm dialogue box to check that the user wishes to
proceed in cropping the image using the drag box they've drawn. If so, time
to pass the data to our PHP script. Add a bit more to your mouseup handler:

if	
 (confirm("Crop	
 the	
 image	
 using	
 this	
 drag	
 box?"))	
 {

 location.href	
 =	
 "index.php?crop_attempt=true&crop_l="+db_data.left
+"&crop_t="+
db_data.top+"&crop_w="+db_data.width+"&crop_h="+db_data.height;
}	
 else	
 {

 db.remove();
}

So if the user clicks 'OK' on the dialogue box that pops up, we redirect to
the same page we're on, but passing on the four pieces of data we need to
give to our PHP script. We also pass it a flag crop_attempt, which our
PHP script can detect, so it knows what action we'd like it to do. If the user
clicks 'Cancel', we remove the drag box (since it's clearly unsuitable). Onto
the PHP...

Smashing eBook #14│Mastering jQuery │ 42

http://www.smashingmagazine.com/2010/08/04/commonly-confused-bits-of-jquery/
http://www.smashingmagazine.com/2010/08/04/commonly-confused-bits-of-jquery/

PHP: SAVING THE MODIFIED FILE

Remember we said that our image_manipulation.php had two tasks — one
to first save the uploaded image and another to save the cropped version of
the image? It's time to extend the script to handle the latter request. Append
the following to image_manipulation.php:

/*	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
|	
 CROP	
 saved	
 image
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 */
	

if	
 (isset($_GET["crop_attempt"]))	
 {

 //cropping	
 code	
 here
}

So just like before, we condition-off the code area and make sure a flag is
present before executing the code. As for the code itself, we need to go
back into the land of GD. We need to create two image handles. Into one,
we import the uploaded image; the second one will be where we paste the
cropped portion of the uploaded image into, so we can essentially think of
these two as source and destination. We copy from the source onto the
destination canvas via the GD function imagecopy(). This needs to know
8 pieces of information:

• destination, the destination image handle

• source, the source image handle

• destination X, the left position to paste TO on the destination
image handle

• destination Y, the top position “ “ “ “

• source X, the left position to grab FROM on the source image handle

• source Y, the top position “ “ “ “

Smashing eBook #14│Mastering jQuery │ 43

• source W, the width (counting from source X) of the portion to be
copied over from the source image handle

• source H, the height (counting from source Y) “ “ “ “

Fortunately, we already have the data necessary to pass to the final 6
arguments in the form of the JavaScript data we collected and passed back
to the page in our mouseup event handler a few moments ago.

Let's create our first handle. As I said, we'll import the uploaded image into
it. That means we need to know its file extension, and that's why we saved it
as a session variable earlier.

switch($_SESSION["fileExt"][1])	
 {

 case	
 "jpg":	
 case	
 "jpeg":

 var	
 source_img	
 =	
 imagecreatefromjpeg($_SESSION["newPath"]);

 break;

 case	
 "gif":

 var	
 source_img	
 =	
 imagecreatefromgif($_SESSION["newPath"]);

 break;

 case	
 "png":

 var	
 source_img	
 =	
 imagecreatefrompng($_SESSION["newPath"]);

 break;
}

As you can see, the file type of the image determines which function we use
to open it into an image handle. Now let's extend this switch statement to
create the second image handle, the destination canvas. Just as the
function for opening an existing image depends on image type, so too does
the function used to create a blank image. Hence, let's extend our switch
statement:

switch($_SESSION["fileExt"][1])	
 {

 case	
 "jpg":	
 case	
 "jpeg":

 $source_img	
 =	
 imagecreatefromjpeg($_SESSION["newPath"]);

Smashing eBook #14│Mastering jQuery │ 44

 $dest_ing	
 =	
 imagecreatetruecolor($_GET["crop_w"],	
 $_GET["crop_h"]);

 break;

 case	
 "gif":

 $source_img	
 =	
 imagecreatefromgif($_SESSION["newPath"]);

 $dest_ing	
 =	
 imagecreate($_GET["crop_w"],	
 $_GET["crop_h"]);

 break;

 case	
 "png":

 $source_img	
 =	
 imagecreatefrompng($_SESSION["newPath"]);

 $dest_ing	
 =	
 imagecreate($_GET["crop_w"],	
 $_GET["crop_h"]);

 break;
}

You'll notice that the difference between opening a blank image and
opening one from an existing or uploaded file is that, for the former, you
must specify the dimensions. In our case, that's the width and height of the
drag box, which we passed into the page via the $_GET['crop_w'] and
$_GET['crop_h'] vars respectively.

So now we have our two canvases, it's time to do the copying. The following
is one function call, but since it takes 8 arguments, I'm breaking it onto
several lines to make it readable. Add it after your switch statement:

imagecopy(

 $dest_img,

 $source_img,

0

0

 $_GET["crop_l"],

 $_GET["crop_t"],

 $_GET["crop_w"],

 $_GET["crop_h"]
);

Smashing eBook #14│Mastering jQuery │ 45

The final part is to save the cropped image. For this tutorial, we'll overwrite
the original file, but you might like to extend this application, so the user has
the option of saving the cropped image as a separate file, rather than losing
the original.

Saving the image is easy. We just call a particular function based on (yes,
you guessed it) the image's type. We pass in two arguments: the image
handle we're saving, and the file name we want to save it as. So let's do that:

switch($_SESSION["fileExt"][1])	
 {

 case	
 "jpg":	
 case	
 "jpeg":

 imagejpeg($dest_img,	
 $_SESSION["newPath"]);	
 break;

 case	
 "gif":

 imagegif($dest_img,	
 $_SESSION["newPath"]);	
 break;

 case	
 "png":

 imagepng($dest_img,	
 $_SESSION["newPath"]);	
 break;
}

It's always good to clean up after ourselves - in PHP terms that means
freeing up memory, so let's destroy our image handlers now that we don't
need them anymore.

imagedestroy($dest_img);
imagedestroy($source_img);

Lastly, we want to redirect to the index page. You might wonder why we'd
do this, since we're on it already (and have been the whole time). The trick is
that by redirecting, we can lose the arguments we passed in the URL. We
don't want these hanging around because, if the user refreshes the page,
he'll invoke the PHP crop script again (since it will detect the arguments).
The arguments have done their job, so now they have to go, so we redirect
to the index page without these arguments. Add the following line to force
the redirect:

header("Location:	
 index.php");	
 //bye	
 bye	
 arguments

Smashing eBook #14│Mastering jQuery │ 46

Final Touches
So that's it. We now have a fully-working facility to first upload then crop an
image, and save it to the server. Don't forget you can download the source
files (updated) for your reference.

There's plenty of ways you could extend this simple application. Explore GD
(and perhaps other image libraries for PHP); you can do wonders with
images, resizing them, distorting them, changing them to greyscale and
much more. Another thing to think about would be security; this tutorial
does not aim to cover that here, but if you were working in a user control
panel environment, you'd want to make sure the facility was secure and that
the user could not edit other user's files.

With this in mind, you might make the saved file's path more complex, e.g. if
the user named it pic.jpg, you might actually name it on the server
34iweshfjdshkj4r_pic.jpg. You could then hide this image path, e.g.
by specifying the SRC attribute as 'getPic.php' instead of referencing the
image directly inside an image's SRC attribute. That PHP script would then
open and display the saved file (by reading its path in the session variable),
and the user would never be aware of its path.

The possibilities are endless, but hopefully this tutorial has given you a
starting point.

Smashing eBook #14│Mastering jQuery │ 47

http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip
http://coding.smashingmagazine.com/wp-content/uploads/2011/04/manipulation_img_crop.zip

Make Your Own Bookmarklets With
jQuery

Tommy Saylor

Bookmarklets are small JavaScript-powered applications in link form. Often
“one-click” tools and functions, they’re typically used to extend the
functionality of the browser and to interact with Web services. They can do
things like post to your WordPress or Tumblr blog, submit any selected text
to Google Search, or modify a current page’s CSS… and many other things!

Because they run on JavaScript (a client-side programming language),
bookmarklets (sometimes called “favelets”) are supported by all major
browsers on all platforms, without any additional plug-ins or software
needed. In most instances, the user can just drag the bookmarklet link to
their toolbar, and that’s it!

Smashing eBook #14│Mastering jQuery │ 48

In this article, we’ll go through how to make your own bookmarklets, using
the jQuery JavaScript framework.

Ge#ing Started
You can make a faux URI with JavaScript by prefacing the code with
javascript:, like so:

<a	
 href="javascript:	
 alert('Arbitrary	
 JS	
 code!');">Alert!

Notice that when we put it in the href attribute, we replaced what would
normally be double quotes (“) with single quotes (‘), so the href attribute’s
value and JavaScript function don’t get cut off midway. That’s not the only
way to circumvent that problem, but it’ll do for now.

We can take this concept as far as we want, adding multiple lines of
JavaScript inside these quote marks, with each line separated by a
semicolon (;), sans line break. If your bookmarklet won’t need any updating
later, this method of “all inclusiveness” will probably be fine. For this tutorial,
we’ll be externalizing the JavaScript code and storing it in a .JS file, which
we’ll host somewhere else.

A link to an externalized bookmarklet:

<a	
 href="javascript:(function()
{document.body.appendChild(document.createElement('script')).src='http://
foo.bar/baz.js	
 ';})();">Externalized	
 Bookmarklet

This looks for the document’s body and appends a <script> element to it
with a src we’ve defined, in this case, “http://foo.bar/baz.js”. Keep in mind
that if the user is on an empty tab or a place which, for some reason, has no
body, nothing will happen as nothing can be appended to.

You can host that .JS file wherever is convenient, but keep bandwidth in
mind if you expect a ton of traffic.

Smashing eBook #14│Mastering jQuery │ 49

http://jquery.com/
http://jquery.com/
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://foo.bar/baz.js
http://foo.bar/baz.js

Enter jQuery

Since many of you may be familiar with the jQuery framework, we’ll use that
to build our bookmarklet.

The best way to get it inside of our .JS file is to append it from Google’s
CDN, conditionally wrapped to only include it if necessary:

(function(){
	

 //	
 the	
 minimum	
 version	
 of	
 jQuery	
 we	
 want

 var	
 v	
 =	
 "1.3.2";
	

 //	
 check	
 prior	
 inclusion	
 and	
 version

 if	
 (window.jQuery	
 ===	
 undefined	
 ||	
 window.jQuery.fn.jquery	
 <	
 v)	
 {

 var	
 done	
 =	
 false;

 var	
 script	
 =	
 document.createElement("script");

 script.src	
 =	
 "http://ajax.googleapis.com/ajax/libs/jquery/	
 "	
 +	
 v	
 +	
 "/
jquery.min.js";

 script.onload	
 =	
 script.onreadystatechange	
 =	
 function(){

 if	
 (!done	
 &&	
 (!this.readyState	
 ||	
 this.readyState	
 ==	
 "loaded"	
 ||	

this.readyState	
 ==	
 "complete"))	
 {

 done	
 =	
 true;

 initMyBookmarklet();

 }

 };

 document.getElementsByTagName("head")[0].appendChild(script);

 }	
 else	
 {

 initMyBookmarklet();

 }
	

 function	
 initMyBookmarklet()	
 {

 (window.myBookmarklet	
 =	
 function()	
 {

 //	
 your	
 JavaScript	
 code	
 goes	
 here!

Smashing eBook #14│Mastering jQuery │ 50

http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/

 })();

 }
	

})();

(Script appending from jQuery's source code, adapted by Paul Irish:
http://pastie.org/462639)

That starts by defining v, the minimum version of jQuery that our
code can safely use. Using that, it then checks to see if jQuery
needs to be loaded. If so, it adds it to the page with cross-
browser event handling support to run initMyBookmarklet when
jQuery's ready. If not, it jumps straight to initMyBookmarklet,
which adds the myBookmarklet to the global window object.

Grabbing Information
Depending on what kind of bookmarklet you're making, it may be
worthwhile to grab information from the current page. The two most
important things are document.location, which returns the page's URL,
and document.title, which returns the page's title.

You can also return any text the user may have selected, but it's a little more
complicated:

function	
 getSelText()	
 {

 var	
 SelText	
 =	
 '';

 if	
 (window.getSelection)	
 {

 SelText	
 =	
 window.getSelection();

 }	
 else	
 if	
 (document.getSelection)	
 {

 SelText	
 =	
 document.getSelection();

 }	
 else	
 if	
 (document.selection)	
 {

Smashing eBook #14│Mastering jQuery │ 51

http://pastie.org/462639
http://pastie.org/462639

 SelText	
 =	
 document.selection.createRange().text;

 }

 return	
 SelText;
}

(Modified from http://www.codetoad.com/
javascript_get_selected_text.asp)

Another option is to use JavaScript's input function to query the user with
a pop-up:

var	
 yourname	
 =	
 prompt("What's	
 your	
 name?","my	
 name...");

Dealing with Characters
If you'll be putting all your JavaScript into the link itself rather than an
external file, you may want a better way to nest double quotes (as in, "a
quote 'within a quote'") than just demoting them into singles. Use " in
their place (as in, "a quote "within a quote""):

<a
href="javascript:var%20yourname=prompt("What%20is%20your%20name?
");alert%20("Hello,%20"+yourname+"!")">What	
 is	
 your	
 name?</
a>

In that example, we also encoded the spaces into %20, which may be
beneficial for older browsers or to make sure the link doesn't fall apart in
transit somewhere.

Within JavaScript, you may sometimes need to escape quotes. You can do
so by prefacing them with a backslash (\):

alert("This	
 is	
 a	
 \"quote\"	
 within	
 a	
 quote.");

Smashing eBook #14│Mastering jQuery │ 52

http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp
http://www.codetoad.com/javascript_get_selected_text.asp

Pu#ing It All Together
Just for fun, let's make a little bookmarklet that checks to see if there's a
selected word on the page, and, if there is, searches Wikipedia and shows
the results in a jQuery-animated iFrame.

We'll start by combining the framework from "Enter jQuery" with the text
selection function from "Grabbing Information":

(function(){
	

 var	
 v	
 =	
 "1.3.2";
	

 if	
 (window.jQuery	
 ===	
 undefined	
 ||	
 window.jQuery.fn.jquery	
 <	
 v)	
 {

 var	
 done	
 =	
 false;

 var	
 script	
 =	
 document.createElement("script");

 script.src	
 =	
 "http://ajax.googleapis.com/ajax/libs/jquery/	
 "	
 +	
 v	
 +	
 "/
jquery.min.js";

 script.onload	
 =	
 script.onreadystatechange	
 =	
 function(){

 if	
 (!done	
 &&	
 (!this.readyState	
 ||	
 this.readyState	
 ==	
 "loaded"	
 ||	

this.readyState	
 ==	
 "complete"))	
 {

 done	
 =	
 true;

 initMyBookmarklet();

 }

 };

 document.getElementsByTagName("head")[0].appendChild(script);

 }	
 else	
 {

 initMyBookmarklet();

 }
	

 function	
 initMyBookmarklet()	
 {

 (window.myBookmarklet	
 =	
 function()	
 {

 function	
 getSelText()	
 {

 var	
 s	
 =	
 '';

Smashing eBook #14│Mastering jQuery │ 53

http://wikipedia.org/
http://wikipedia.org/

 if	
 (window.getSelection)	
 {

 s	
 =	
 window.getSelection();

 }	
 else	
 if	
 (document.getSelection)	
 {

 s	
 =	
 document.getSelection();

 }	
 else	
 if	
 (document.selection)	
 {

 s	
 =	
 document.selection.createRange().text;

 }

 return	
 s;

 }

 //	
 your	
 JavaScript	
 code	
 goes	
 here!

 })();

 }
	

})();

Next, we'll look for any selected text and save it to a variable, "s". If there's
nothing selected, we'll try to prompt the user for something:

var	
 s	
 =	
 "";
s	
 =	
 getSelText();
if	
 (s	
 ==	
 "")	
 {

 var	
 s	
 =	
 prompt("Forget	
 something?");
}

After checking to make sure we received an actual value for "s", we'll
append the new content to the document's body. In it will be: a container div
("wikiframe"), a background veil ("wikiframe_veil") and a "Loading..."
paragraph, the iFrame itself, and some CSS to make things look pretty and
affix everything above the actual page.

if	
 ((s	
 !=	
 "")	
 &&	
 (s	
 !=	
 null))	
 {

 $("body").append("\

 <div	
 id='wikiframe'>\

 <div	
 id='wikiframe_veil'	
 style=''>\

 <p>Loading...</p>\

Smashing eBook #14│Mastering jQuery │ 54

 </div>\

 <iframe	
 src='http://en.wikipedia.org/w/index.php?&search=	
 "+s+"'	

onload=\"$('#wikiframe	
 iframe').slideDown(500);\">Enable	
 iFrames.</iframe>\

 <style	
 type='text/css'>\

 #wikiframe_veil	
 {	
 display:	
 none;	
 position:	
 fixed;	
 width:	
 100%;	

height:	
 100%;	
 top:	
 0;	
 left:	
 0;	
 background-­‐color:	
 rgba(255,255,255,.25);	

cursor:	
 pointer;	
 z-­‐index:	
 900;	
 }\

 #wikiframe_veil	
 p	
 {	
 color:	
 black;	
 font:	
 normal	
 normal	
 bold	
 20px/20px	

Helvetica,	
 sans-­‐serif;	
 position:	
 absolute;	
 top:	
 50%;	
 left:	
 50%;	
 width:	

10em;	
 margin:	
 -­‐10px	
 auto	
 0	
 -­‐5em;	
 text-­‐align:	
 center;	
 }\

 #wikiframe	
 iframe	
 {	
 display:	
 none;	
 position:	
 fixed;	
 top:	
 10%;	
 left:	

10%;	
 width:	
 80%;	
 height:	
 80%;	
 z-­‐index:	
 999;	
 border:	
 10px	
 solid	

rgba(0,0,0,.5);	
 margin:	
 -­‐5px	
 0	
 0	
 -­‐5px;	
 }\

 </style>\

 </div>");

 $("#wikiframe_veil").fadeIn(750);
}

We set the iFrame's src attribute to Wikipedia's search URL plus "s". Its CSS
sets it to display: none; by default, so we can have it make a grander
entrance when its page is loaded via its onload attribute and a jQuery
animation.

After all that's added to the page, we'll fade in the background veil.

Notice the backslashes at the end of each line of appended HTML. These
allow for multiple rows and make everything easier on the eyes for editing.

Almost done, but we need to make sure these elements don't already exist
before appending them. We can accomplish that by throwing the above
code inside a ($("#wikiframe").length == 0) conditional
statement, accompanied by some code to remove it all if the statement
returns negative.

The end result .JS file:

Smashing eBook #14│Mastering jQuery │ 55

(function(){
	

 var	
 v	
 =	
 "1.3.2";
	

 if	
 (window.jQuery	
 ===	
 undefined	
 ||	
 window.jQuery.fn.jquery	
 <	
 v)	
 {

 var	
 done	
 =	
 false;

 var	
 script	
 =	
 document.createElement("script");

 script.src	
 =	
 "http://ajax.googleapis.com/ajax/libs/jquery/	
 "	
 +	
 v	
 +	
 "/
jquery.min.js";

 script.onload	
 =	
 script.onreadystatechange	
 =	
 function(){

 if	
 (!done	
 &&	
 (!this.readyState	
 ||	
 this.readyState	
 ==	
 "loaded"	
 ||	

this.readyState	
 ==	
 "complete"))	
 {

 done	
 =	
 true;

 initMyBookmarklet();

 }

 };

 document.getElementsByTagName("head")[0].appendChild(script);

 }	
 else	
 {

 initMyBookmarklet();

 }
	

 function	
 initMyBookmarklet()	
 {

 (window.myBookmarklet	
 =	
 function()	
 {

 function	
 getSelText()	
 {

 var	
 s	
 =	
 '';

 if	
 (window.getSelection)	
 {

 s	
 =	
 window.getSelection();

 }	
 else	
 if	
 (document.getSelection)	
 {

 s	
 =	
 document.getSelection();

 }	
 else	
 if	
 (document.selection)	
 {

 s	
 =	
 document.selection.createRange().text;

 }

 return	
 s;

Smashing eBook #14│Mastering jQuery │ 56

 }

 if	
 ($("#wikiframe").length	
 ==	
 0)	
 {

 var	
 s	
 =	
 "";

 s	
 =	
 getSelText();

 if	
 (s	
 ==	
 "")	
 {

 var	
 s	
 =	
 prompt("Forget	
 something?");

 }

 if	
 ((s	
 !=	
 "")	
 &&	
 (s	
 !=	
 null))	
 {

 $("body").append("\

 <div	
 id='wikiframe'>\

 <div	
 id='wikiframe_veil'	
 style=''>\

 <p>Loading...</p>\

 </div>\

 <iframe	
 src='http://en.wikipedia.org/w/index.php?&search=	
 "+s+"'	

onload=\"$('#wikiframe	
 iframe').slideDown(500);\">Enable	
 iFrames.</iframe>\

 <style	
 type='text/css'>\

 #wikiframe_veil	
 {	
 display:	
 none;	
 position:	
 fixed;	
 width:	
 100%;	

height:	
 100%;	
 top:	
 0;	
 left:	
 0;	
 background-­‐color:	
 rgba(255,255,255,.25);	

cursor:	
 pointer;	
 z-­‐index:	
 900;	
 }\

 #wikiframe_veil	
 p	
 {	
 color:	
 black;	
 font:	
 normal	
 normal	
 bold	

20px/20px	
 Helvetica,	
 sans-­‐serif;	
 position:	
 absolute;	
 top:	
 50%;	
 left:	
 50%;	

width:	
 10em;	
 margin:	
 -­‐10px	
 auto	
 0	
 -­‐5em;	
 text-­‐align:	
 center;	
 }\

 #wikiframe	
 iframe	
 {	
 display:	
 none;	
 position:	
 fixed;	
 top:	
 10%;	

left:	
 10%;	
 width:	
 80%;	
 height:	
 80%;	
 z-­‐index:	
 999;	
 border:	
 10px	
 solid	

rgba(0,0,0,.5);	
 margin:	
 -­‐5px	
 0	
 0	
 -­‐5px;	
 }\

 </style>\

 </div>");

 $("#wikiframe_veil").fadeIn(750);

 }

 }	
 else	
 {

 $("#wikiframe_veil").fadeOut(750);

 $("#wikiframe	
 iframe").slideUp(500);

 setTimeout("$('#wikiframe').remove()",	
 750);

 }

Smashing eBook #14│Mastering jQuery │ 57

 $("#wikiframe_veil").click(function(event){

 $("#wikiframe_veil").fadeOut(750);

 $("#wikiframe	
 iframe").slideUp(500);

 setTimeout("$('#wikiframe').remove()",	
 750);

 });

 })();

 }
	

})();

Note that we fade out and remove the "wikiframe" content both if the user
re-clicks the bookmarklet after it's loaded and if the user clicks on its
background veil.

The HTML bookmarklet to load that script:

<a	
 href="javascript:(function(){if(window.myBookmarklet!==undefined)
{myBookmarklet();}
else{document.body.appendChild(document.createElement('script')).src='http
://iamnotagoodartist.com/stuff/wikiframe2.js?	
 ';}})();">WikiFrame

See that (window.myBookmarklet!==undefined) conditional? That
makes sure the .JS file is only appended once and jumps straight to running
the myBookmarklet() function if it already exists.

Make It Be#er
This example was fun, but it definitely could be better.

For starters, it isn't compressed. If your script will be accessed a lot, keeping
two versions of your code may be a good idea: one normal working version
and one compressed minimized version. Serving the compressed one to
your users will save loading time for them and bandwidth for you. Check the
resource links below for some good JavaScript compressors.

Smashing eBook #14│Mastering jQuery │ 58

http://iamnotagoodartist.com/stuff/wikiframe2.js?
http://iamnotagoodartist.com/stuff/wikiframe2.js?
http://iamnotagoodartist.com/stuff/wikiframe2.js?
http://iamnotagoodartist.com/stuff/wikiframe2.js?

While the bookmarklet technically works in IE6, its use of static positioning
means that it just kind of appends itself to the bottom of the page. Not very
user-friendly! With some more time and attention to rendering differences in
IE, the bookmarklet could be made to function and look the same (or at least
comparable) in different browsers.

In our example, we used jQuery, which is an excellent tool for developing
more advanced JavaScript applications. But if your bookmarklet is simple
and doesn't require a lot of CSS manipulation or animation, chances are you
may not need something so advanced. Plain old JavaScript might suffice.
Remember, the less you force the user to load, the faster their experience
and the happier they will be.

Smashing eBook #14│Mastering jQuery │ 59

http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/

THINGS TO KEEP IN MIND AND BEST PRACTICES

Untested code is broken code, as old-school programmers will tell you.
While bookmarklets will run on any browser that supports JavaScript, testing
them in as many browsers as you can wouldn't hurt. Especially when
working with CSS, a whole slew of variables can affect the way your script
works. At the very least, enlist your friends and family to test the
bookmarklet on their computers and their browsers.

Speaking of CSS, remember that any content you add to a page will be
affected by that page's CSS. So, applying a reset to your elements to
override any potentially inherited margins, paddings or font stylings would
be wise.

Because bookmarklets are, by definition, extraneous, many of the guidelines
for JavaScript—such as unobtrusiveness and graceful degradation—aren't
as sacred as they normally are. For the most part, though, a healthy
understanding of best practices for traditional JavaScript and its frameworks
will only help you:

• Develop a coding style and stick to it. Keep it consistent, and keep it
neat.

• Take it easy on the browser. Don't run processes that you don't need,
and don't create unnecessary global variables.

• Use comments where appropriate. They make jumping back into the
code later on much easier.

• Avoid shorthand JavaScript. Use plenty of semi-colons, even when your
browser would let you get away without them.

Smashing eBook #14│Mastering jQuery │ 60

http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://net.tutsplus.com/tutorials/javascript-ajax/24-javascript-best-practices-for-beginners/
http://net.tutsplus.com/tutorials/javascript-ajax/24-javascript-best-practices-for-beginners/
http://www.smashingmagazine.com/2008/09/16/jquery-examples-and-best-practices/
http://www.smashingmagazine.com/2008/09/16/jquery-examples-and-best-practices/

Further Resources

HELPFUL JAVASCRIPT TOOLS

• JSLint
JavaScript validation tool.

• Bookmarklet Builder
Made way back in 2004, but still useful.

• List of Really Useful Free Tools for JavaScript Developers
Courtesy of W3Avenue.

• JS Bin
Open-source collaborative JavaScript debugging tool.

• How to Dynamically Insert Javascript and CSS
A well-written examination of JavaScript and CSS appending, and its
potential pitfalls.

• Run jQuery Code Bookmarklet
A pretty cool script that checks for and loads jQuery all within the
bookmarklet. Also has a handy generator.

• Google AJAX Libraries API
Do you prefer Prototype or MooTools to jQuery? Load your preference
straight from Google and save yourself the bandwidth.

JAVASCRIPT AND CSS COMPRESSORS

• Online Javascript Compression Tool
JavaScript compressor, with both Minify and Packer methods.

• Clean CSS
CSS formatter and optimizer, based on csstidy, with a nice GUI and
plenty of options.

Smashing eBook #14│Mastering jQuery │ 61

http://www.jslint.com/
http://www.jslint.com/
http://subsimple.com/bookmarklets/jsbuilder.htm
http://subsimple.com/bookmarklets/jsbuilder.htm
http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/
http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/
http://jsbin.com/
http://jsbin.com/
http://www.hunlock.com/blogs/Howto_Dynamically_Insert_Javascript_And_CSS
http://www.hunlock.com/blogs/Howto_Dynamically_Insert_Javascript_And_CSS
http://benalman.com/projects/run-jquery-code-bookmarklet/
http://benalman.com/projects/run-jquery-code-bookmarklet/
http://benalman.com/code/test/jquery-run-code-bookmarklet/
http://benalman.com/code/test/jquery-run-code-bookmarklet/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://jscompress.com/
http://jscompress.com/
http://www.cleancss.com/
http://www.cleancss.com/
http://csstidy.sourceforge.net/
http://csstidy.sourceforge.net/

• Scriptalizer
Combines and compresses multiple JavaScript and/or CSS files.

• JavaScript Unpacker and Beautifier
Useful for translating super-compressed code into something more
human-legible (and vice versa).

COLLECTIONS

• myBookmarklets

• Bookmarklets.com

• Bookmarklets, Favelets and Snippets
Via Smashing Magazine.

• Quix
"Your Bookmarklets, On Steroids."

• Jesse's Bookmarklets

• Marklets

Smashing eBook #14│Mastering jQuery │ 62

http://scriptalizer.com/
http://scriptalizer.com/
http://jsbeautifier.org/
http://jsbeautifier.org/
http://krapplack.de/?u=/bookmarklets/
http://krapplack.de/?u=/bookmarklets/
http://www.bookmarklets.com/
http://www.bookmarklets.com/
http://www.smashingmagazine.com/2007/01/24/bookmarklets-favelets-and-snippets/
http://www.smashingmagazine.com/2007/01/24/bookmarklets-favelets-and-snippets/
http://quixapp.com/
http://quixapp.com/
https://www.squarefree.com/bookmarklets/
https://www.squarefree.com/bookmarklets/
http://www.marklets.com/bookmarklets/
http://www.marklets.com/bookmarklets/

Essential jQuery Plugin Pa#erns

Addy Osmani

I occasionally write about implementing design patterns in JavaScript.
They’re an excellent way of building upon proven approaches to solving
common development problems, and I think there’s a lot of benefit to using
them. But while well-known JavaScript patterns are useful, another side of
development could benefit from its own set of design patterns: jQuery
plugins. The official jQuery plugin authoring guide offers a great starting
point for getting into writing plugins and widgets, but let’s take it further.

Plugin development has evolved over the past few years. We no longer
have just one way to write plugins, but many. In reality, certain patterns
might work better for a particular problem or component than others.

Some developers may wish to use the jQuery UI widget factory; it’s great for
complex, flexible UI components. Some may not. Some might like to
structure their plugins more like modules (similar to the module pattern) or
use a more formal module format such as AMD (asynchronous module
definition). Some might want their plugins to harness the power of
prototypal inheritance. Some might want to use custom events or pub/sub
to communicate from plugins to the rest of their app. And so on.

I began to think about plugin patterns after noticing a number of efforts to
create a one-size-fits-all jQuery plugin boilerplate. While such a boilerplate is
a great idea in theory, the reality is that we rarely write plugins in one fixed
way, using a single pattern all the time.

Let’s assume that you’ve tried your hand at writing your own jQuery plugins
at some point and you’re comfortable putting together something that
works. It’s functional. It does what it needs to do, but perhaps you feel it

Smashing eBook #14│Mastering jQuery │ 63

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://ajpiano.com/widgetfactory/
http://ajpiano.com/widgetfactory/
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD

could be structured better. Maybe it could be more flexible or could solve
more issues. If this sounds familiar and you aren’t sure of the differences
between many of the different jQuery plugin patterns, then you might find
what I have to say helpful.

My advice won’t provide solutions to every possible pattern, but it will cover
popular patterns that developers use in the wild.

Note: This post is targeted at intermediate to advanced developers. If
you don’t feel you’re ready for this just yet, I’m happy to recommend the
official jQuery Plugins/Authoring guide, Ben Alman’s plugin style guide
and Remy Sharp’s “Signs of a Poorly Written jQuery Plugin.”

Pa#erns
jQuery plugins have very few defined rules, which one of the reasons for the
incredible diversity in how they’re implemented. At the most basic level, you
can write a plugin simply by adding a new function property to jQuery’s
$.fn object, as follows:

$.fn.myPluginName	
 =	
 function()	
 {

 //	
 your	
 plugin	
 logic
};

This is great for compactness, but the following would be a better
foundation to build on:

(function(
 $	
){

 $.fn.myPluginName	
 =	
 function()	
 {

 //	
 your	
 plugin	
 logic

 };
})(
 jQuery	
);

Smashing eBook #14│Mastering jQuery │ 64

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/

Here, we’ve wrapped our plugin logic in an anonymous function. To ensure
that our use of the $ sign as a shorthand creates no conflicts between
jQuery and other JavaScript libraries, we simply pass it to this closure, which
maps it to the dollar sign, thus ensuring that it can’t be affected by anything
outside of its scope of execution.

An alternative way to write this pattern would be to use $.extend, which
enables you to define multiple functions at once and which sometimes make
more sense semantically:

(function(
 $	
){

 $.extend($.fn,	
 {

 myplugin:	
 function(){

 //	
 your	
 plugin	
 logic

 }

 });
})(
 jQuery	
);

We could do a lot more to improve on all of this; and the first complete
pattern we’ll be looking at today, the lightweight pattern, covers some best
practices that we can use for basic everyday plugin development and that
takes into account common gotchas to look out for.

SOME QUICK NOTES

You can find all of the patterns from this post in this GitHub repository.

While most of the patterns below will be explained, I recommend reading
through the comments in the code, because they will offer more insight into
why certain practices are best.

I should also mention that none of this would be possible without the
previous work, input and advice of other members of the jQuery community.
I’ve listed them inline with each pattern so that you can read up on their
individual work if interested.

Smashing eBook #14│Mastering jQuery │ 65

https://github.com/addyosmani/jquery-plugin-patterns/
https://github.com/addyosmani/jquery-plugin-patterns/

A Lightweight Start
Let’s begin our look at patterns with something basic that follows best
practices (including those in the jQuery plugin-authoring guide). This pattern
is ideal for developers who are either new to plugin development or who
just want to achieve something simple (such as a utility plugin). This
lightweight start uses the following:

• Common best practices, such as a semi-colon before the function’s
invocation; window, document, undefined passed in as
arguments; and adherence to the jQuery core style guidelines.

• A basic defaults object.

• A simple plugin constructor for logic related to the initial creation and
the assignment of the element to work with.

• Extending the options with defaults.

• A lightweight wrapper around the constructor, which helps to avoid
issues such as multiple instantiations.

/*!

 *	
 jQuery	
 lightweight	
 plugin	
 boilerplate

 *	
 Original	
 author:	
 @ajpiano

 *	
 Further	
 changes,	
 comments:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 the	
 semi-­‐colon	
 before	
 the	
 function	
 invocation	
 is	
 a	
 safety
//	
 net	
 against	
 concatenated	
 scripts	
 and/or	
 other	
 plugins
//	
 that	
 are	
 not	
 closed	
 properly.
;(function	
 (
 $,	
 window,	
 document,	
 undefined	
)	
 {
	

 //	
 undefined	
 is	
 used	
 here	
 as	
 the	
 undefined	
 global

 //	
 variable	
 in	
 ECMAScript	
 3	
 and	
 is	
 mutable	
 (i.e.	
 it	
 can

Smashing eBook #14│Mastering jQuery │ 66

 //	
 be	
 changed	
 by	
 someone	
 else).	
 undefined	
 isn't	
 really

 //	
 being	
 passed	
 in	
 so	
 we	
 can	
 ensure	
 that	
 its	
 value	
 is

 //	
 truly	
 undefined.	
 In	
 ES5,	
 undefined	
 can	
 no	
 longer	
 be

 //	
 modified.
	

 //	
 window	
 and	
 document	
 are	
 passed	
 through	
 as	
 local

 //	
 variables	
 rather	
 than	
 as	
 globals,	
 because	
 this	
 (slightly)

 //	
 quickens	
 the	
 resolution	
 process	
 and	
 can	
 be	
 more

 //	
 efficiently	
 minified	
 (especially	
 when	
 both	
 are

 //	
 regularly	
 referenced	
 in	
 your	
 plugin).
	

 //	
 Create	
 the	
 defaults	
 once

 var	
 pluginName	
 =	
 'defaultPluginName',

 defaults	
 =	
 {

 propertyName:	
 "value"

 };
	

 //	
 The	
 actual	
 plugin	
 constructor

 function	
 Plugin(
 element,	
 options	
)	
 {

 this.element	
 =	
 element;
	

 //	
 jQuery	
 has	
 an	
 extend	
 method	
 that	
 merges	
 the

 //	
 contents	
 of	
 two	
 or	
 more	
 objects,	
 storing	
 the

 //	
 result	
 in	
 the	
 first	
 object.	
 The	
 first	
 object

 //	
 is	
 generally	
 empty	
 because	
 we	
 don't	
 want	
 to	
 alter

 //	
 the	
 default	
 options	
 for	
 future	
 instances	
 of	
 the	
 plugin

 this.options	
 =	
 $.extend(
 {},	
 defaults,	
 options)	
 ;
	

 this._defaults	
 =	
 defaults;

 this._name	
 =	
 pluginName;
	

 this.init();

 }

Smashing eBook #14│Mastering jQuery │ 67

	

 Plugin.prototype.init	
 =	
 function	
 ()	
 {

 //	
 Place	
 initialization	
 logic	
 here

 //	
 You	
 already	
 have	
 access	
 to	
 the	
 DOM	
 element	
 and

 //	
 the	
 options	
 via	
 the	
 instance,	
 e.g.	
 this.element

 //	
 and	
 this.options

 };
	

 //	
 A	
 really	
 lightweight	
 plugin	
 wrapper	
 around	
 the	
 constructor,

 //	
 preventing	
 against	
 multiple	
 instantiations

 $.fn[pluginName]	
 =	
 function	
 (
 options	
)	
 {

 return	
 this.each(function	
 ()	
 {

 if	
 (!$.data(this,	
 'plugin_'	
 +	
 pluginName))	
 {

 $.data(this,	
 'plugin_'	
 +	
 pluginName,

 new	
 Plugin(
 this,	
 options	
));

 }

 });

 }
	

})(
 jQuery,	
 window,	
 document	
);

FURTHER READING

• Plugins/Authoring, jQuery

• “Signs of a Poorly Written jQuery Plugin,” Remy Sharp

• “How to Create Your Own jQuery Plugin,” Elijah Manor

• “Style in jQuery Plugins and Why It Matters,” Ben Almon

• “Create Your First jQuery Plugin, Part 2,” Andrew Wirick

Smashing eBook #14│Mastering jQuery │ 68

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://remysharp.com/2010/06/03/signs-of-a-poorly-written-jquery-plugin/
http://msdn.microsoft.com/en-us/scriptjunkie/ff608209
http://msdn.microsoft.com/en-us/scriptjunkie/ff608209
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://msdn.microsoft.com/en-us/scriptjunkie/ff696759
http://enterprisejquery.com/2010/07/create-your-first-jquery-plugin-part-2-revising-your-plugin/
http://enterprisejquery.com/2010/07/create-your-first-jquery-plugin-part-2-revising-your-plugin/

“Complete” Widget Factory
While the authoring guide is a great introduction to plugin development, it
doesn’t offer a great number of conveniences for obscuring away from
common plumbing tasks that we have to deal with on a regular basis.

The jQuery UI Widget Factory is a solution to this problem that helps you
build complex, stateful plugins based on object-oriented principles. It also
eases communication with your plugin’s instance, obfuscating a number of
the repetitive tasks that you would have to code when working with basic
plugins.

In case you haven’t come across these before, stateful plugins keep track of
their current state, also allowing you to change properties of the plugin after
it has been initialized.

One of the great things about the Widget Factory is that the majority of the
jQuery UI library actually uses it as a base for its components. This means
that if you’re looking for further guidance on structure beyond this template,
you won’t have to look beyond the jQuery UI repository.

Back to patterns. This jQuery UI boilerplate does the following:

• Covers almost all supported default methods, including triggering
events.

• Includes comments for all of the methods used, so that you’re never
unsure of where logic should fit in your plugin.

/*!

 *	
 jQuery	
 UI	
 Widget-­‐factory	
 plugin	
 boilerplate	
 (for	
 1.8/9+)

 *	
 Author:	
 @addyosmani

 *	
 Further	
 changes:	
 @peolanha

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

Smashing eBook #14│Mastering jQuery │ 69

;(function	
 (
 $,	
 window,	
 document,	
 undefined	
)	
 {
	

 //	
 define	
 your	
 widget	
 under	
 a	
 namespace	
 of	
 your	
 choice

 //	
 	
 with	
 additional	
 parameters	
 e.g.

 //	
 $.widget(
 "namespace.widgetname",	
 (optional)	
 -­‐	
 an

 //	
 existing	
 widget	
 prototype	
 to	
 inherit	
 from,	
 an	
 object

 //	
 literal	
 to	
 become	
 the	
 widget's	
 prototype	
);
	

 $.widget(
 "namespace.widgetname"	
 ,	
 {
	

 //Options	
 to	
 be	
 used	
 as	
 defaults

 options:	
 {

 someValue:	
 null

 },
	

 //Setup	
 widget	
 (eg.	
 element	
 creation,	
 apply	
 theming

 //	
 ,	
 bind	
 events	
 etc.)

 _create:	
 function	
 ()	
 {
	

 //	
 _create	
 will	
 automatically	
 run	
 the	
 first	
 time

 //	
 this	
 widget	
 is	
 called.	
 Put	
 the	
 initial	
 widget

 //	
 setup	
 code	
 here,	
 then	
 you	
 can	
 access	
 the	
 element

 //	
 on	
 which	
 the	
 widget	
 was	
 called	
 via	
 this.element.

 //	
 The	
 options	
 defined	
 above	
 can	
 be	
 accessed

 //	
 via	
 this.options	
 this.element.addStuff();

 },
	

 //	
 Destroy	
 an	
 instantiated	
 plugin	
 and	
 clean	
 up

 //	
 modifications	
 the	
 widget	
 has	
 made	
 to	
 the	
 DOM

 destroy:	
 function	
 ()	
 {
	

 //	
 this.element.removeStuff();

 //	
 For	
 UI	
 1.8,	
 destroy	
 must	
 be	
 invoked	
 from	
 the

Smashing eBook #14│Mastering jQuery │ 70

 //	
 base	
 widget

 $.Widget.prototype.destroy.call(this);

 //	
 For	
 UI	
 1.9,	
 define	
 _destroy	
 instead	
 and	
 don't

 //	
 worry	
 about

 //	
 calling	
 the	
 base	
 widget

 },
	

 methodB:	
 function	
 (
 event	
)	
 {

 //_trigger	
 dispatches	
 callbacks	
 the	
 plugin	
 user

 //	
 can	
 subscribe	
 to

 //	
 signature:	
 _trigger(
 "callbackName"	
 ,	
 [eventObject],

 //	
 [uiObject]	
)

 //	
 eg.	
 this._trigger(
 "hover",	
 e	
 /*where	
 e.type	
 ==

 //	
 "mouseenter"*/,	
 {	
 hovered:	
 $(e.target)});

 this._trigger('methodA',	
 event,	
 {

 key:	
 value

 });

 },
	

 methodA:	
 function	
 (
 event	
)	
 {

 this._trigger('dataChanged',	
 event,	
 {

 key:	
 value

 });

 },
	

 //	
 Respond	
 to	
 any	
 changes	
 the	
 user	
 makes	
 to	
 the

 //	
 option	
 method

 _setOption:	
 function	
 (
 key,	
 value	
)	
 {

 switch	
 (key)	
 {

 case	
 "someValue":

 //this.options.someValue	
 =	
 doSomethingWith(
 value	
);

 break;

 default:

Smashing eBook #14│Mastering jQuery │ 71

 //this.options[
 key	
]	
 =	
 value;

 break;

 }
	

 //	
 For	
 UI	
 1.8,	
 _setOption	
 must	
 be	
 manually	
 invoked

 //	
 from	
 the	
 base	
 widget

 $.Widget.prototype._setOption.apply(
 this,	
 arguments	
);

 //	
 For	
 UI	
 1.9	
 the	
 _super	
 method	
 can	
 be	
 used	
 instead

 //	
 this._super(
 "_setOption",	
 key,	
 value	
);

 }

 });
	

})(
 jQuery,	
 window,	
 document	
);

FURTHER READING

• The jQuery UI Widget Factory

• “Introduction to Stateful Plugins and the Widget Factory,” Doug Neiner

• “Widget Factory” (explained), Scott Gonzalez

• “Understanding jQuery UI Widgets: A Tutorial,” Hacking at 0300

Namespacing And Nested Namespacing
Namespacing your code is a way to avoid collisions with other objects and
variables in the global namespace. They’re important because you want to
safeguard your plugin from breaking in the event that another script on the
page uses the same variable or plugin names as yours. As a good citizen of
the global namespace, you must also do your best not to prevent other
developers’ scripts from executing because of the same issues.

Smashing eBook #14│Mastering jQuery │ 72

http://ajpiano.com/widgetfactory/#slide1
http://ajpiano.com/widgetfactory/#slide1
http://msdn.microsoft.com/en-us/scriptjunkie/ff706600
http://msdn.microsoft.com/en-us/scriptjunkie/ff706600
http://wiki.jqueryui.com/w/page/12138135/Widget%20factory
http://wiki.jqueryui.com/w/page/12138135/Widget%20factory
http://bililite.com/blog/understanding-jquery-ui-widgets-a-tutorial/
http://bililite.com/blog/understanding-jquery-ui-widgets-a-tutorial/

JavaScript doesn’t really have built-in support for namespaces as other
languages do, but it does have objects that can be used to achieve a similar
effect. Employing a top-level object as the name of your namespace, you
can easily check for the existence of another object on the page with the
same name. If such an object does not exist, then we define it; if it does
exist, then we simply extend it with our plugin.

Objects (or, rather, object literals) can be used to create nested
namespaces, such as namespace.subnamespace.pluginName and so
on. But to keep things simple, the namespacing boilerplate below should
give you everything you need to get started with these concepts.

/*!

 *	
 jQuery	
 namespaced	
 'Starter'	
 plugin	
 boilerplate

 *	
 Author:	
 @dougneiner

 *	
 Further	
 changes:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

;(function	
 (
 $	
)	
 {

 if	
 (!$.myNamespace)	
 {

 $.myNamespace	
 =	
 {};

 };
	

 $.myNamespace.myPluginName	
 =	
 function	
 (
 el,	
 myFunctionParam,	
 options	
)	
 {

 //	
 To	
 avoid	
 scope	
 issues,	
 use	
 'base'	
 instead	
 of	
 'this'

 //	
 to	
 reference	
 this	
 class	
 from	
 internal	
 events	
 and	
 functions.

 var	
 base	
 =	
 this;
	

 //	
 Access	
 to	
 jQuery	
 and	
 DOM	
 versions	
 of	
 element

 base.$el	
 =	
 $(el);

 base.el	
 =	
 el;
	

 //	
 Add	
 a	
 reverse	
 reference	
 to	
 the	
 DOM	
 object

Smashing eBook #14│Mastering jQuery │ 73

 base.$el.data(
 "myNamespace.myPluginName"	
 ,	
 base	
);
	

 base.init	
 =	
 function	
 ()	
 {

 base.myFunctionParam	
 =	
 myFunctionParam;
	

 base.options	
 =	
 $.extend({},

 $.myNamespace.myPluginName.defaultOptions,	
 options);
	

 //	
 Put	
 your	
 initialization	
 code	
 here

 };
	

 //	
 Sample	
 Function,	
 Uncomment	
 to	
 use

 //	
 base.functionName	
 =	
 function(
 paramaters	
){

 //

 //	
 };

 //	
 Run	
 initializer

 base.init();

 };
	

 $.myNamespace.myPluginName.defaultOptions	
 =	
 {

 myDefaultValue:	
 ""

 };
	

 $.fn.mynamespace_myPluginName	
 =	
 function

 (
 myFunctionParam,	
 options	
)	
 {

 return	
 this.each(function	
 ()	
 {

 (new	
 $.myNamespace.myPluginName(this,

 myFunctionParam,	
 options));

 });

 };
	

})(
 jQuery	
);

Smashing eBook #14│Mastering jQuery │ 74

FURTHER READING

• “Namespacing in JavaScript,” Angus Croll

• “Use Your $.fn jQuery Namespace,” Ryan Florence

• “JavaScript Namespacing,” Peter Michaux

• “Modules and namespaces in JavaScript,” Axel Rauschmayer

Custom Events For Pub/Sub (With "e Widget
factory)
You may have used the Observer (Pub/Sub) pattern in the past to develop
asynchronous JavaScript applications. The basic idea here is that elements
will publish event notifications when something interesting occurs in your
application. Other elements then subscribe to or listen for these events and
respond accordingly. This results in the logic for your application being
significantly more decoupled (which is always good).

In jQuery, we have this idea that custom events provide a built-in means to
implement a publish and subscribe system that’s quite similar to the
Observer pattern. So, bind('eventType') is functionally equivalent to
performing subscribe('eventType'), and trigger('eventType')
is roughly equivalent to publish('eventType').

Some developers might consider the jQuery event system as having too
much overhead to be used as a publish and subscribe system, but it’s been
architected to be both reliable and robust for most use cases. In the
following jQuery UI widget factory template, we’ll implement a basic custom
event-based pub/sub pattern that allows our plugin to subscribe to event
notifications from the rest of our application, which publishes them.

Smashing eBook #14│Mastering jQuery │ 75

http://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://javascriptweblog.wordpress.com/2010/12/07/namespacing-in-javascript/
http://ryanflorence.com/use-your-fn-jquery-namespace/
http://ryanflorence.com/use-your-fn-jquery-namespace/
http://michaux.ca/articles/javascript-namespacing
http://michaux.ca/articles/javascript-namespacing
http://www.2ality.com/2011/04/modules-and-namespaces-in-javascript.html
http://www.2ality.com/2011/04/modules-and-namespaces-in-javascript.html

/*!

 *	
 jQuery	
 custom-­‐events	
 plugin	
 boilerplate

 *	
 Author:	
 DevPatch

 *	
 Further	
 changes:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 In	
 this	
 pattern,	
 we	
 use	
 jQuery's	
 custom	
 events	
 to	
 add
//	
 pub/sub	
 (publish/subscribe)	
 capabilities	
 to	
 widgets.
//	
 Each	
 widget	
 would	
 publish	
 certain	
 events	
 and	
 subscribe
//	
 to	
 others.	
 This	
 approach	
 effectively	
 helps	
 to	
 decouple
//	
 the	
 widgets	
 and	
 enables	
 them	
 to	
 function	
 independently.
	

;(function	
 (
 $,	
 window,	
 document,	
 undefined	
)	
 {

 $.widget("ao.eventStatus",	
 {

 options:	
 {
	

 },
	

 _create	
 :	
 function()	
 {

 var	
 self	
 =	
 this;
	

 //self.element.addClass(
 "my-­‐widget"	
);
	

 //subscribe	
 to	
 'myEventStart'

 self.element.bind(
 "myEventStart",	
 function(
 e	
)	
 {

 console.log("event	
 start");

 });
	

 //subscribe	
 to	
 'myEventEnd'

 self.element.bind(
 "myEventEnd",	
 function(
 e	
)	
 {

 console.log("event	
 end");

 });
	

Smashing eBook #14│Mastering jQuery │ 76

 //unsubscribe	
 to	
 'myEventStart'

 //self.element.unbind(
 "myEventStart",	
 function(e){

 ///console.log("unsubscribed	
 to	
 this	
 event");

 //});

 },
	

 destroy:	
 function(){

 $.Widget.prototype.destroy.apply(
 this,	
 arguments	
);

 },

 });
})(
 jQuery,	
 window	
 ,	
 document	
);
	

//Publishing	
 event	
 notifications
//usage:
//	
 $(".my-­‐widget").trigger("myEventStart");
//	
 $(".my-­‐widget").trigger("myEventEnd");

FURTHER READING

• “Communication Between jQuery UI Widgets,” Benjamin Sternthal

• “Understanding the Publish/Subscribe Pattern for Greater JavaScript
Scalability,” Addy Osmani

Prototypal Inheritance With "e DOM-To-Object
Bridge Pa#ern
In JavaScript, we don’t have the traditional notion of classes that you would
find in other classical programming languages, but we do have prototypal
inheritance. With prototypal inheritance, an object inherits from another
object. And we can apply this concept to jQuery plugin development.

Smashing eBook #14│Mastering jQuery │ 77

http://www.devpatch.com/2010/03/communication-between-jquery-ui-widgets/
http://www.devpatch.com/2010/03/communication-between-jquery-ui-widgets/
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh201955.aspx

Alex Sexton and Scott Gonzalez have looked at this topic in detail. In sum,
they found that for organized modular development, clearly separating the
object that defines the logic for a plugin from the plugin-generation process
itself can be beneficial. The benefit is that testing your plugin’s code
becomes easier, and you can also adjust the way things work behind the
scenes without altering the way that any object APIs you’ve implemented
are used.

In Sexton’s previous post on this topic, he implements a bridge that enables
you to attach your general logic to a particular plugin, which we’ve
implemented in the template below. Another advantage of this pattern is
that you don’t have to constantly repeat the same plugin initialization code,
thus ensuring that the concepts behind DRY development are maintained.
Some developers might also find this pattern easier to read than others.

/*!

 *	
 jQuery	
 prototypal	
 inheritance	
 plugin	
 boilerplate

 *	
 Author:	
 Alex	
 Sexton,	
 Scott	
 Gonzalez

 *	
 Further	
 changes:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 myObject	
 -­‐	
 an	
 object	
 representing	
 a	
 concept	
 that	
 you	
 want
//	
 to	
 model	
 (e.g.	
 a	
 car)
var	
 myObject	
 =	
 {

 init:	
 function(
 options,	
 elem	
)	
 {

 //	
 Mix	
 in	
 the	
 passed-­‐in	
 options	
 with	
 the	
 default	
 options

 this.options	
 =	
 $.extend(
 {},	
 this.options,	
 options	
);
	

 //	
 Save	
 the	
 element	
 reference,	
 both	
 as	
 a	
 jQuery

 //	
 reference	
 and	
 a	
 normal	
 reference

 this.elem	
 	
 =	
 elem;

 this.$elem	
 =	
 $(elem);
	

Smashing eBook #14│Mastering jQuery │ 78

http://alexsexton.com/
http://alexsexton.com/
http://scottgonzalez.com/
http://scottgonzalez.com/

 //	
 Build	
 the	
 DOM's	
 initial	
 structure

 this._build();
	

 //	
 return	
 this	
 so	
 that	
 we	
 can	
 chain	
 and	
 use	
 the	
 bridge	
 with	
 less	
 code.

 return	
 this;

 },

 options:	
 {

 name:	
 "No	
 name"

 },

 _build:	
 function(){

 //this.$elem.html('<h1>'+this.options.name+'</h1>');

 },

 myMethod:	
 function(
 msg	
){

 //	
 You	
 have	
 direct	
 access	
 to	
 the	
 associated	
 and	
 cached

 //	
 jQuery	
 element

 //	
 this.$elem.append('<p>'+msg+'</p>');

 }
};
	

//	
 Object.create	
 support	
 test,	
 and	
 fallback	
 for	
 browsers	
 without	
 it
if	
 (
 typeof	
 Object.create	
 !==	
 'function'	
)	
 {

 Object.create	
 =	
 function	
 (o)	
 {

 function	
 F()	
 {}

 F.prototype	
 =	
 o;

 return	
 new	
 F();

 };
}
	

//	
 Create	
 a	
 plugin	
 based	
 on	
 a	
 defined	
 object
$.plugin	
 =	
 function(
 name,	
 object	
)	
 {

 $.fn[name]	
 =	
 function(
 options	
)	
 {

 return	
 this.each(function()	
 {

 if	
 (
 !	
 $.data(
 this,	
 name	
)	
)	
 {

Smashing eBook #14│Mastering jQuery │ 79

 $.data(
 this,	
 name,	
 Object.create(object).init(

 options,	
 this	
)	
);

 }

 });

 };
};
	

//	
 Usage:
//	
 With	
 myObject,	
 we	
 could	
 now	
 essentially	
 do	
 this:
//	
 $.plugin('myobj',	
 myObject);
	

//	
 and	
 at	
 this	
 point	
 we	
 could	
 do	
 the	
 following
//	
 $('#elem').myobj({name:	
 "John"});
//	
 var	
 inst	
 =	
 $('#elem').data('myobj');
//	
 inst.myMethod('I	
 am	
 a	
 method');

FURTHER READING

• “Using Inheritance Patterns To Organize Large jQuery Applications,”
Alex Sexton

• “How to Manage Large Applications With jQuery or Whatever” (further
discussion), Alex Sexton

• “Practical Example of the Need for Prototypal Inheritance,” Neeraj Singh

• “Prototypal Inheritance in JavaScript,” Douglas Crockford

jQuery UI Widget Factory Bridge
If you liked the idea of generating plugins based on objects in the last
design pattern, then you might be interested in a method found in the
jQuery UI Widget Factory called $.widget.bridge. This bridge basically
serves as a middle layer between a JavaScript object that is created using
$.widget and jQuery’s API, providing a more built-in solution to achieving

Smashing eBook #14│Mastering jQuery │ 80

http://alexsexton.com/?p=51
http://alexsexton.com/?p=51
http://www.slideshare.net/SlexAxton/how-to-manage-large-jquery-apps
http://www.slideshare.net/SlexAxton/how-to-manage-large-jquery-apps
http://blog.bigbinary.com/2010/03/12/pratical-example-of-need-for-prototypal-inheritance.html
http://blog.bigbinary.com/2010/03/12/pratical-example-of-need-for-prototypal-inheritance.html
http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html

object-based plugin definition. Effectively, we’re able to create stateful
plugins using a custom constructor.

Moreover, $.widget.bridge provides access to a number of other
capabilities, including the following:

• Both public and private methods are handled as one would expect in
classical OOP (i.e. public methods are exposed, while calls to private
methods are not possible);

• Automatic protection against multiple initializations;

• Automatic generation of instances of a passed object, and storage of
them within the selection’s internal $.data cache;

• Options can be altered post-initialization.

For further information on how to use this pattern, look at the comments in
the boilerplate below:

/*!

 *	
 jQuery	
 UI	
 Widget	
 factory	
 "bridge"	
 plugin	
 boilerplate

 *	
 Author:	
 @erichynds

 *	
 Further	
 changes,	
 additional	
 comments:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 a	
 "widgetName"	
 object	
 constructor
//	
 required:	
 this	
 must	
 accept	
 two	
 arguments,
//	
 options:	
 an	
 object	
 of	
 configuration	
 options
//	
 element:	
 the	
 DOM	
 element	
 the	
 instance	
 was	
 created	
 on
var	
 widgetName	
 =	
 function(
 options,	
 element	
){

 this.name	
 =	
 "myWidgetName";

 this.options	
 =	
 options;

 this.element	
 =	
 element;

 this._init();
}

Smashing eBook #14│Mastering jQuery │ 81

	

//	
 the	
 "widgetName"	
 prototype
widgetName.prototype	
 =	
 {
	

 //	
 _create	
 will	
 automatically	
 run	
 the	
 first	
 time	
 this

 //	
 widget	
 is	
 called

 _create:	
 function(){

 //	
 creation	
 code

 },
	

 //	
 required:	
 initialization	
 logic	
 for	
 the	
 plugin	
 goes	
 into	
 _init

 //	
 This	
 fires	
 when	
 your	
 instance	
 is	
 first	
 created	
 and	
 when

 //	
 attempting	
 to	
 initialize	
 the	
 widget	
 again	
 (by	
 the	
 bridge)

 //	
 after	
 it	
 has	
 already	
 been	
 initialized.

 _init:	
 function(){

 //	
 init	
 code

 },
	

 //	
 required:	
 objects	
 to	
 be	
 used	
 with	
 the	
 bridge	
 must	
 contain	
 an

 //	
 'option'.	
 Post-­‐initialization,	
 the	
 logic	
 for	
 changing	
 options

 //	
 goes	
 here.

 option:	
 function(
 key,	
 value	
){
	

 //	
 optional:	
 get/change	
 options	
 post	
 initialization

 //	
 ignore	
 if	
 you	
 don't	
 require	
 them.
	

 //	
 signature:	
 $('#foo').bar({	
 cool:false	
 });

 if(
 $.isPlainObject(
 key	
)	
){

 this.options	
 =	
 $.extend(
 true,	
 this.options,	
 key	
);
	

 //	
 signature:	
 $('#foo').option('cool');	
 -­‐	
 getter

 }	
 else	
 if	
 (
 key	
 &&	
 typeof	
 value	
 ===	
 "undefined"	
){

 return	
 this.options[
 key	
];
	

Smashing eBook #14│Mastering jQuery │ 82

 //	
 signature:	
 $('#foo').bar('option',	
 'baz',	
 false);

 }	
 else	
 {

 this.options[
 key	
]	
 =	
 value;

 }
	

 //	
 required:	
 option	
 must	
 return	
 the	
 current	
 instance.

 //	
 When	
 re-­‐initializing	
 an	
 instance	
 on	
 elements,	
 option

 //	
 is	
 called	
 first	
 and	
 is	
 then	
 chained	
 to	
 the	
 _init	
 method.

 return	
 this;

 },
	

 //	
 notice	
 no	
 underscore	
 is	
 used	
 for	
 public	
 methods

 publicFunction:	
 function(){

 console.log('public	
 function');

 },
	

 //	
 underscores	
 are	
 used	
 for	
 private	
 methods

 _privateFunction:	
 function(){

 console.log('private	
 function');

 }
};
	

//	
 usage:
	

//	
 connect	
 the	
 widget	
 obj	
 to	
 jQuery's	
 API	
 under	
 the	
 "foo"	
 namespace
//	
 $.widget.bridge("foo",	
 widgetName);
	

//	
 create	
 an	
 instance	
 of	
 the	
 widget	
 for	
 use
//	
 var	
 instance	
 =	
 $("#elem").foo({
//	
 	
 	
 	
 	
 baz:	
 true
//	
 });
	

//	
 your	
 widget	
 instance	
 exists	
 in	
 the	
 elem's	
 data
//	
 instance.data("foo").element;	
 //	
 =>	
 #elem	
 element
	

Smashing eBook #14│Mastering jQuery │ 83

//	
 bridge	
 allows	
 you	
 to	
 call	
 public	
 methods...
//	
 instance.foo("publicFunction");	
 //	
 =>	
 "public	
 method"
	

//	
 bridge	
 prevents	
 calls	
 to	
 internal	
 methods
//	
 instance.foo("_privateFunction");	
 //	
 =>	
 #elem	
 element

FURTHER READING

• “Using $.widget.bridge Outside of the Widget Factory,” Eric Hynds

jQuery Mobile Widgets With "e Widget factory
jQuery mobile is a framework that encourages the design of ubiquitous Web
applications that work both on popular mobile devices and platforms and on
the desktop. Rather than writing unique applications for each device or OS,
you simply write the code once and it should ideally run on many of the A-,
B- and C-grade browsers out there at the moment.

The fundamentals behind jQuery mobile can also be applied to plugin and
widget development, as seen in some of the core jQuery mobile widgets
used in the official library suite. What’s interesting here is that even though
there are very small, subtle differences in writing a “mobile”-optimized
widget, if you’re familiar with using the jQuery UI Widget Factory, you should
be able to start writing these right away.

The mobile-optimized widget below has a number of interesting differences
than the standard UI widget pattern we saw earlier:

• $.mobile.widget is referenced as an existing widget prototype from
which to inherit. For standard widgets, passing through any such
prototype is unnecessary for basic development, but using this jQuery-
mobile specific widget prototype provides internal access to further
“options” formatting.

Smashing eBook #14│Mastering jQuery │ 84

http://erichynds.com/jquery/using-jquery-ui-widget-factory-bridge/
http://erichynds.com/jquery/using-jquery-ui-widget-factory-bridge/

• You’ll notice in _create() a guide on how the official jQuery mobile
widgets handle element selection, opting for a role-based approach
that better fits the jQM mark-up. This isn’t at all to say that standard
selection isn’t recommended, only that this approach might make more
sense given the structure of jQM pages.

• Guidelines are also provided in comment form for applying your plugin
methods on pagecreate as well as for selecting the plugin application
via data roles and data attributes.

/*!

 *	
 (jQuery	
 mobile)	
 jQuery	
 UI	
 Widget-­‐factory	
 plugin	
 boilerplate	
 (for	
 1.8/9+)

 *	
 Author:	
 @scottjehl

 *	
 Further	
 changes:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

;(function	
 (
 $,	
 window,	
 document,	
 undefined	
)	
 {
	

 //define	
 a	
 widget	
 under	
 a	
 namespace	
 of	
 your	
 choice

 //here	
 'mobile'	
 has	
 been	
 used	
 in	
 the	
 first	
 parameter

 $.widget(
 "mobile.widgetName",	
 $.mobile.widget,	
 {
	

 //Options	
 to	
 be	
 used	
 as	
 defaults

 options:	
 {

 foo:	
 true,

 bar:	
 false

 },
	

 _create:	
 function()	
 {

 //	
 _create	
 will	
 automatically	
 run	
 the	
 first	
 time	
 this

 //	
 widget	
 is	
 called.	
 Put	
 the	
 initial	
 widget	
 set-­‐up	
 code

 //	
 here,	
 then	
 you	
 can	
 access	
 the	
 element	
 on	
 which

 //	
 the	
 widget	
 was	
 called	
 via	
 this.element

Smashing eBook #14│Mastering jQuery │ 85

 //	
 The	
 options	
 defined	
 above	
 can	
 be	
 accessed	
 via

 //	
 this.options
	

 //var	
 m	
 =	
 this.element,

 //p	
 =	
 m.parents(":jqmData(role='page')"),

 //c	
 =	
 p.find(":jqmData(role='content')")

 },
	

 //	
 Private	
 methods/props	
 start	
 with	
 underscores

 _dosomething:	
 function(){	
 ...	
 },
	

 //	
 Public	
 methods	
 like	
 these	
 below	
 can	
 can	
 be	
 called

 //	
 externally:

 //	
 $("#myelem").foo(
 "enable",	
 arguments	
);
	

 enable:	
 function()	
 {	
 ...	
 },
	

 //	
 Destroy	
 an	
 instantiated	
 plugin	
 and	
 clean	
 up	
 modifications

 //	
 the	
 widget	
 has	
 made	
 to	
 the	
 DOM

 destroy:	
 function	
 ()	
 {

 //this.element.removeStuff();

 //	
 For	
 UI	
 1.8,	
 destroy	
 must	
 be	
 invoked	
 from	
 the

 //	
 base	
 widget

 $.Widget.prototype.destroy.call(this);

 //	
 For	
 UI	
 1.9,	
 define	
 _destroy	
 instead	
 and	
 don't

 //	
 worry	
 about	
 calling	
 the	
 base	
 widget

 },
	

 methodB:	
 function	
 (
 event	
)	
 {

 //_trigger	
 dispatches	
 callbacks	
 the	
 plugin	
 user	
 can

 //	
 subscribe	
 to

 //signature:	
 _trigger(
 "callbackName"	
 ,	
 [eventObject],

 //	
 	
 [uiObject]	
)

Smashing eBook #14│Mastering jQuery │ 86

 //	
 eg.	
 this._trigger(
 "hover",	
 e	
 /*where	
 e.type	
 ==

 //	
 "mouseenter"*/,	
 {	
 hovered:	
 $(e.target)});

 this._trigger('methodA',	
 event,	
 {

 key:	
 value

 });

 },
	

 methodA:	
 function	
 (
 event	
)	
 {

 this._trigger('dataChanged',	
 event,	
 {

 key:	
 value

 });

 },
	

 //Respond	
 to	
 any	
 changes	
 the	
 user	
 makes	
 to	
 the	
 option	
 method

 _setOption:	
 function	
 (
 key,	
 value	
)	
 {

 switch	
 (key)	
 {

 case	
 "someValue":

 //this.options.someValue	
 =	
 doSomethingWith(
 value	
);

 break;

 default:

 //this.options[
 key	
]	
 =	
 value;

 break;

 }
	

 //	
 For	
 UI	
 1.8,	
 _setOption	
 must	
 be	
 manually	
 invoked	
 from

 //	
 the	
 base	
 widget

 $.Widget.prototype._setOption.apply(this,	
 arguments);

 //	
 For	
 UI	
 1.9	
 the	
 _super	
 method	
 can	
 be	
 used	
 instead

 //	
 this._super(
 "_setOption",	
 key,	
 value	
);

 }

 });
	

})(
 jQuery,	
 window,	
 document	
);

Smashing eBook #14│Mastering jQuery │ 87

	

//usage:	
 $("#myelem").foo(
 options	
);
	

/*	
 Some	
 additional	
 notes	
 -­‐	
 delete	
 this	
 section	
 before	
 using	
 the	

boilerplate.
	

 We	
 can	
 also	
 self-­‐init	
 this	
 widget	
 whenever	
 a	
 new	
 page	
 in	
 jQuery	
 Mobile	
 is	

created.	
 jQuery	
 Mobile's	
 "page"	
 plugin	
 dispatches	
 a	
 "create"	
 event	
 when	
 a	

jQuery	
 Mobile	
 page	
 (found	
 via	
 data-­‐role=page	
 attr)	
 is	
 first	
 initialized.
	

We	
 can	
 listen	
 for	
 that	
 event	
 (called	
 "pagecreate"	
)	
 and	
 run	
 our	
 plugin	

automatically	
 whenever	
 a	
 new	
 page	
 is	
 created.
	

$(document).bind("pagecreate",	
 function	
 (e)	
 {

 //	
 In	
 here,	
 e.target	
 refers	
 to	
 the	
 page	
 that	
 was	
 created

 //	
 (it's	
 the	
 target	
 of	
 the	
 pagecreate	
 event)

 //	
 So,	
 we	
 can	
 simply	
 find	
 elements	
 on	
 this	
 page	
 that	
 match	
 a

 //	
 selector	
 of	
 our	
 choosing,	
 and	
 call	
 our	
 plugin	
 on	
 them.

 //	
 Here's	
 how	
 we'd	
 call	
 our	
 "foo"	
 plugin	
 on	
 any	
 element	
 with	
 a

 //	
 data-­‐role	
 attribute	
 of	
 "foo":

 $(e.target).find("[data-­‐role='foo']").foo(options);
	

 //	
 Or,	
 better	
 yet,	
 let's	
 write	
 the	
 selector	
 accounting	
 for	
 the	

configurable

 //	
 data-­‐attribute	
 namespace

 $(e.target).find(":jqmData(role='foo')").foo(options);
});
	

That's	
 it.	
 Now	
 you	
 can	
 simply	
 reference	
 the	
 script	
 containing	
 your	
 widget	

and	
 pagecreate	
 binding	
 in	
 a	
 page	
 running	
 jQuery	
 Mobile	
 site,	
 and	
 it	
 will	

automatically	
 run	
 like	
 any	
 other	
 jQM	
 plugin.

 */

Smashing eBook #14│Mastering jQuery │ 88

RequireJS And "e jQuery UI Widget Factory
RequireJS is a script loader that provides a clean solution for encapsulating
application logic inside manageable modules. It’s able to load modules in
the correct order (through its order plugin); it simplifies the process of
combining scripts via its excellent optimizer; and it provides the means for
defining module dependencies on a per-module basis.

James Burke has written a comprehensive set of tutorials on getting started
with RequireJS. But what if you’re already familiar with it and would like to
wrap your jQuery UI widgets or plugins in a RequireJS-compatible module
wrapper?.

In the boilerplate pattern below, we demonstrate how a compatible widget
can be defined that does the following:

• Allows the definition of widget module dependencies, building on top of
the previous jQuery UI boilerplate presented earlier;

• Demonstrates one approach to passing in HTML template assets for
creating templated widgets with jQuery (in conjunction with the jQuery
tmpl plugin) (View the comments in _create().)

• Includes a quick tip on adjustments that you can make to your widget
module if you wish to later pass it through the RequireJS optimizer

/*!

 *	
 jQuery	
 UI	
 Widget	
 +	
 RequireJS	
 module	
 boilerplate	
 (for	
 1.8/9+)

 *	
 Authors:	
 @jrburke,	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 Note	
 from	
 James:
//
//	
 This	
 assumes	
 you	
 are	
 using	
 the	
 RequireJS+jQuery	
 file,	
 and
//	
 that	
 the	
 following	
 files	
 are	
 all	
 in	
 the	
 same	
 directory:

Smashing eBook #14│Mastering jQuery │ 89

//
//	
 -­‐	
 require-­‐jquery.js
//	
 -­‐	
 jquery-­‐ui.custom.min.js	
 (custom	
 jQuery	
 UI	
 build	
 with	
 widget	
 factory)
//	
 -­‐	
 templates/
//	
 	
 	
 	
 -­‐	
 asset.html
//	
 -­‐	
 ao.myWidget.js
	

//	
 Then	
 you	
 can	
 construct	
 the	
 widget	
 like	
 so:
	

//ao.myWidget.js	
 file:
define("ao.myWidget",	
 ["jquery",	
 "text!templates/asset.html",	
 "jquery-­‐
ui.custom.min","jquery.tmpl"],	
 function	
 ($,	
 assetHtml)	
 {
	

 //	
 define	
 your	
 widget	
 under	
 a	
 namespace	
 of	
 your	
 choice

 //	
 'ao'	
 is	
 used	
 here	
 as	
 a	
 demonstration

 $.widget(
 "ao.myWidget",	
 {
	

 //	
 Options	
 to	
 be	
 used	
 as	
 defaults

 options:	
 {},
	

 //	
 Set	
 up	
 widget	
 (e.g.	
 create	
 element,	
 apply	
 theming,

 //	
 bind	
 events,	
 etc.)

 _create:	
 function	
 ()	
 {
	

 //	
 _create	
 will	
 automatically	
 run	
 the	
 first	
 time

 //	
 this	
 widget	
 is	
 called.	
 Put	
 the	
 initial	
 widget

 //	
 set-­‐up	
 code	
 here,	
 then	
 you	
 can	
 access	
 the	
 element

 //	
 on	
 which	
 the	
 widget	
 was	
 called	
 via	
 this.element.

 //	
 The	
 options	
 defined	
 above	
 can	
 be	
 accessed	
 via

 //	
 this.options
	

 //this.element.addStuff();

 //this.element.addStuff();

 //this.element.tmpl(assetHtml).appendTo(this.content);

 },

Smashing eBook #14│Mastering jQuery │ 90

	

 //	
 Destroy	
 an	
 instantiated	
 plugin	
 and	
 clean	
 up	
 modifications

 //	
 that	
 the	
 widget	
 has	
 made	
 to	
 the	
 DOM

 destroy:	
 function	
 ()	
 {

 //t	
 his.element.removeStuff();

 //	
 For	
 UI	
 1.8,	
 destroy	
 must	
 be	
 invoked	
 from	
 the	
 base

 //	
 widget

 $.Widget.prototype.destroy.call(
 this	
);

 //	
 For	
 UI	
 1.9,	
 define	
 _destroy	
 instead	
 and	
 don't	
 worry

 //	
 about	
 calling	
 the	
 base	
 widget

 },
	

 methodB:	
 function	
 (
 event	
)	
 {

 //	
 _trigger	
 dispatches	
 callbacks	
 the	
 plugin	
 user	
 can

 //	
 subscribe	
 to

 //signature:	
 _trigger(
 "callbackName"	
 ,	
 [eventObject],

 //	
 [uiObject]	
)

 this._trigger('methodA',	
 event,	
 {

 key:	
 value

 });

 },
	

 methodA:	
 function	
 (
 event	
)	
 {

 this._trigger('dataChanged',	
 event,	
 {

 key:	
 value

 });

 },
	

 //Respond	
 to	
 any	
 changes	
 the	
 user	
 makes	
 to	
 the	
 option	
 method

 _setOption:	
 function	
 (
 key,	
 value	
)	
 {

 switch	
 (key)	
 {

 case	
 "someValue":

 //this.options.someValue	
 =	
 doSomethingWith(
 value	
);

Smashing eBook #14│Mastering jQuery │ 91

 break;

 default:

 //this.options[
 key	
]	
 =	
 value;

 break;

 }
	

 //	
 For	
 UI	
 1.8,	
 _setOption	
 must	
 be	
 manually	
 invoked	
 from

 //	
 the	
 base	
 widget

 $.Widget.prototype._setOption.apply(
 this,	
 arguments	
);

 //	
 For	
 UI	
 1.9	
 the	
 _super	
 method	
 can	
 be	
 used	
 instead

 //this._super(
 "_setOption",	
 key,	
 value	
);

 }
	

 //somewhere	
 assetHtml	
 would	
 be	
 used	
 for	
 templating,	
 depending

 //	
 on	
 your	
 choice.

 });
});
	

//	
 If	
 you	
 are	
 going	
 to	
 use	
 the	
 RequireJS	
 optimizer	
 to	
 combine	
 files
//	
 together,	
 you	
 can	
 leave	
 off	
 the	
 "ao.myWidget"	
 argument	
 to	
 define:
//	
 define(["jquery",	
 "text!templates/asset.html",	
 "jquery-­‐ui.custom.min"],	

…

FURTHER READING

• Using RequireJS with jQuery, Rebecca Murphey

• “Fast Modular Code With jQuery and RequireJS,” James Burke

• “jQuery’s Best Friends ,” Alex Sexton

• “Managing Dependencies With RequireJS,” Ruslan Matveev

Smashing eBook #14│Mastering jQuery │ 92

http://jqfundamentals.com/book/index.html#example-10.5
http://jqfundamentals.com/book/index.html#example-10.5
http://speakerrate.com/talks/2983-fast-modular-code-with-jquery-and-requirejs
http://speakerrate.com/talks/2983-fast-modular-code-with-jquery-and-requirejs
http://jquerysbestfriends.com/#slide1
http://jquerysbestfriends.com/#slide1
http://www.angrycoding.com/2011/09/managing-dependencies-with-requirejs.html
http://www.angrycoding.com/2011/09/managing-dependencies-with-requirejs.html

Globally And Per-Call Overridable Options (Best
Options Pa#ern)
For our next pattern, we’ll look at an optimal approach to configuring
options and defaults for your plugin. The way you’re probably familiar with
defining plugin options is to pass through an object literal of defaults to
$.extend, as demonstrated in our basic plugin boilerplate.

If, however, you’re working with a plugin with many customizable options
that you would like users to be able to override either globally or on a per-
call level, then you can structure things a little differently.

Instead, by referring to an options object defined within the plugin
namespace explicitly (for example, $fn.pluginName.options) and
merging this with any options passed through to the plugin when it is initially
invoked, users have the option of either passing options through during
plugin initialization or overriding options outside of the plugin (as
demonstrated here).

/*!

 *	
 jQuery	
 'best	
 options'	
 plugin	
 boilerplate

 *	
 Author:	
 @cowboy

 *	
 Further	
 changes:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

;(function	
 (
 $,	
 window,	
 document,	
 undefined	
)	
 {
	

 $.fn.pluginName	
 =	
 function	
 (
 options	
)	
 {
	

 //	
 Here's	
 a	
 best	
 practice	
 for	
 overriding	
 'defaults'

 //	
 with	
 specified	
 options.	
 Note	
 how,	
 rather	
 than	
 a

 //	
 regular	
 defaults	
 object	
 being	
 passed	
 as	
 the	
 second

Smashing eBook #14│Mastering jQuery │ 93

 //	
 parameter,	
 we	
 instead	
 refer	
 to	
 $.fn.pluginName.options

 //	
 explicitly,	
 merging	
 it	
 with	
 the	
 options	
 passed	
 directly

 //	
 to	
 the	
 plugin.	
 This	
 allows	
 us	
 to	
 override	
 options	
 both

 //	
 globally	
 and	
 on	
 a	
 per-­‐call	
 level.
	

 options	
 =	
 $.extend(
 {},	
 $.fn.pluginName.options,	
 options	
);
	

 return	
 this.each(function	
 ()	
 {
	

 var	
 elem	
 =	
 $(this);
	

 });

 };
	

 //	
 Globally	
 overriding	
 options

 //	
 Here	
 are	
 our	
 publicly	
 accessible	
 default	
 plugin	
 options

 //	
 that	
 are	
 available	
 in	
 case	
 the	
 user	
 doesn't	
 pass	
 in	
 all

 //	
 of	
 the	
 values	
 expected.	
 The	
 user	
 is	
 given	
 a	
 default

 //	
 experience	
 but	
 can	
 also	
 override	
 the	
 values	
 as	
 necessary.

 //	
 eg.	
 $fn.pluginName.key	
 ='otherval';
	

 $.fn.pluginName.options	
 =	
 {
	

 key:	
 "value",

 myMethod:	
 function	
 (
 elem,	
 param	
)	
 {
	

 }

 };
	

})(
 jQuery,	
 window,	
 document	
);

FURTHER READING

• jQuery Pluginization and the accompanying gist, Ben Alman

Smashing eBook #14│Mastering jQuery │ 94

http://benalman.com/talks/jquery-pluginization.html
http://benalman.com/talks/jquery-pluginization.html
https://gist.github.com/472783/e8bf47340413129a8abe5fac55c83336efb5d4e1
https://gist.github.com/472783/e8bf47340413129a8abe5fac55c83336efb5d4e1

A Highly Configurable And Mutable Plugin
Like Alex Sexton’s pattern, the following logic for our plugin isn’t nested in a
jQuery plugin itself. We instead define our plugin’s logic using a constructor
and an object literal defined on its prototype, using jQuery for the actual
instantiation of the plugin object.

Customization is taken to the next level by employing two little tricks, one of
which you’ve seen in previous patterns:

• Options can be overridden both globally and per collection of elements;

• Options can be customized on a per-element level through HTML5 data
attributes (as shown below). This facilitates plugin behavior that can be
applied to a collection of elements but then customized inline without
the need to instantiate each element with a different default value.

You don’t see the latter option in the wild too often, but it can be a
significantly cleaner solution (as long as you don’t mind the inline approach).
If you’re wondering where this could be useful, imagine writing a draggable
plugin for a large set of elements. You could go about customizing their
options like this:

javascript
$('.item-­‐a').draggable({'defaultPosition':'top-­‐left'});
$('.item-­‐b').draggable({'defaultPosition':'bottom-­‐right'});
$('.item-­‐c').draggable({'defaultPosition':'bottom-­‐left'});
//etc

But using our patterns inline approach, the following would be possible:

javascript
$('.items').draggable();

html
<li	
 class="item"	
 data-­‐plugin-­‐options='{"defaultPosition":"top-­‐left"}'></
div>

Smashing eBook #14│Mastering jQuery │ 95

<li	
 class="item"	
 data-­‐plugin-­‐options='{"defaultPosition":"bottom-­‐left"}'></
div>

And so on. You may well have a preference for one of these approaches,
but it is another potentially useful pattern to be aware of.

/*

 *	
 'Highly	
 configurable'	
 mutable	
 plugin	
 boilerplate

 *	
 Author:	
 @markdalgleish

 *	
 Further	
 changes,	
 comments:	
 @addyosmani

 *	
 Licensed	
 under	
 the	
 MIT	
 license

 */
	

//	
 Note	
 that	
 with	
 this	
 pattern,	
 as	
 per	
 Alex	
 Sexton's,	
 the	
 plugin	
 logic
//	
 hasn't	
 been	
 nested	
 in	
 a	
 jQuery	
 plugin.	
 Instead,	
 we	
 just	
 use
//	
 jQuery	
 for	
 its	
 instantiation.
	

;(function(
 $,	
 window,	
 document,	
 undefined	
){
	

 //	
 our	
 plugin	
 constructor

 var	
 Plugin	
 =	
 function(
 elem,	
 options	
){

 this.elem	
 =	
 elem;

 this.$elem	
 =	
 $(elem);

 this.options	
 =	
 options;
	

 //	
 This	
 next	
 line	
 takes	
 advantage	
 of	
 HTML5	
 data	
 attributes

 //	
 to	
 support	
 customization	
 of	
 the	
 plugin	
 on	
 a	
 per-­‐element

 //	
 basis.	
 For	
 example,

 //	
 <div	
 class=item'	
 data-­‐plugin-­‐options='{"message":"Goodbye	

World!"}'></div>

 this.metadata	
 =	
 this.$elem.data(
 'plugin-­‐options'	
);

 };
	

 //	
 the	
 plugin	
 prototype

 Plugin.prototype	
 =	
 {

Smashing eBook #14│Mastering jQuery │ 96

 defaults:	
 {

 message:	
 'Hello	
 world!'

 },
	

 init:	
 function()	
 {

 //	
 Introduce	
 defaults	
 that	
 can	
 be	
 extended	
 either

 //	
 globally	
 or	
 using	
 an	
 object	
 literal.

 this.config	
 =	
 $.extend({},	
 this.defaults,	
 this.options,

 this.metadata);
	

 //	
 Sample	
 usage:

 //	
 Set	
 the	
 message	
 per	
 instance:

 //	
 $('#elem').plugin({	
 message:	
 'Goodbye	
 World!'});

 //	
 or

 //	
 var	
 p	
 =	
 new	
 Plugin(document.getElementById('elem'),

 //	
 {	
 message:	
 'Goodbye	
 World!'}).init()

 //	
 or,	
 set	
 the	
 global	
 default	
 message:

 //	
 Plugin.defaults.message	
 =	
 'Goodbye	
 World!'
	

 this.sampleMethod();

 return	
 this;

 },
	

 sampleMethod:	
 function()	
 {

 //	
 eg.	
 show	
 the	
 currently	
 configured	
 message

 //	
 console.log(this.config.message);

 }

 }
	

 Plugin.defaults	
 =	
 Plugin.prototype.defaults;
	

 $.fn.plugin	
 =	
 function(options)	
 {

 return	
 this.each(function()	
 {

Smashing eBook #14│Mastering jQuery │ 97

 new	
 Plugin(this,	
 options).init();

 });

 };
	

 //optional:	
 window.Plugin	
 =	
 Plugin;
	

})(
 jQuery,	
 window	
 ,	
 document	
);

FURTHER READING

• “Creating Highly Configurable jQuery Plugins,” Mark Dalgleish

• “Writing Highly Configurable jQuery Plugins, Part 2,” Mark Dalgleish

AMD- And CommonJS-Compatible Modules
While many of the plugin and widget patterns presented above are
acceptable for general use, they aren’t without their caveats. Some require
jQuery or the jQuery UI Widget Factory to be present in order to function,
while only a few could be easily adapted to work well as globally compatible
modules both client-side and in other environments.

For this reason, a number of developers, including me, CDNjs maintainer
Thomas Davis and RP Florence, have been looking at both the AMD
(Asynchronous Module Definition) and CommonJS module specifications in
the hopes of extending boilerplate plugin patterns to cleanly work with
packages and dependencies. John Hann and Kit Cambridge have also
explored work in this area.

AMD

The AMD module format (a specification for defining modules where both
the module and dependencies can be asynchronously loaded) has a
number of distinct advantages, including being both asynchronous and

Smashing eBook #14│Mastering jQuery │ 98

http://markdalgleish.com/2011/05/creating-highly-configurable-jquery-plugins/
http://markdalgleish.com/2011/05/creating-highly-configurable-jquery-plugins/
http://markdalgleish.com/2011/09/html5data-creating-highly-configurable-jquery-plugins-part-2/
http://markdalgleish.com/2011/09/html5data-creating-highly-configurable-jquery-plugins-part-2/
http://cdnjs.com/
http://cdnjs.com/
https://github.com/thomasdavis
https://github.com/thomasdavis
https://github.com/rpflorence
https://github.com/rpflorence
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.commonjs.org/wiki/Modules
http://wiki.commonjs.org/wiki/Modules
http://twitter.com/unscriptable
http://twitter.com/unscriptable
https://gist.github.com/1251221
https://gist.github.com/1251221

highly flexible by nature, thus removing the tight coupling one commonly
finds between code and module identity. It’s considered a reliable stepping
stone to the module system proposed for ES Harmony.

When working with anonymous modules, the idea of a module’s identity is
DRY, making it trivial to avoid duplication of file names and code. Because
the code is more portable, it can be easily moved to other locations without
needing to alter the code itself. Developers can also run the same code in
multiple environments just by using an AMD optimizer that works with a
CommonJS environment, such as r.js.

With AMD, the two key concepts you need to be aware of are the require
method and the define method, which facilitate module definition and
dependency loading. The define method is used to define named or
unnamed modules based on the specification, using the following signature:

define(module_id	
 /*optional*/,	
 [dependencies],	
 definition	
 function	
 /
*function	
 for	
 instantiating	
 the	
 module	
 or	
 object*/);

As you can tell from the inline comments, the module’s ID is an optional
argument that is typically required only when non-AMD concatenation tools
are being used (it could be useful in other edge cases, too). One of the
benefits of opting not to use module IDs is having the flexibility to move
your module around the file system without needing to change its ID. The
module’s ID is equivalent to folder paths in simple packages and when not
used in packages.

The dependencies argument represents an array of dependencies that are
required by the module you are defining, and the third argument (factory) is
a function that’s executed to instantiate your module. A barebones module
could be defined as follows:

//	
 Note:	
 here,	
 a	
 module	
 ID	
 (myModule)	
 is	
 used	
 for	
 demonstration
//	
 purposes	
 only
	

define('myModule',	
 ['foo',	
 'bar'],	
 function	
 (
 foo,	
 bar	
)	
 {

Smashing eBook #14│Mastering jQuery │ 99

http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://wiki.ecmascript.org/doku.php?id=harmony:modules
https://github.com/jrburke/r.js/
https://github.com/jrburke/r.js/

 //	
 return	
 a	
 value	
 that	
 defines	
 the	
 module	
 export

 //	
 (i.e.	
 the	
 functionality	
 we	
 want	
 to	
 expose	
 for	
 consumption)

 return	
 function	
 ()	
 {};
});
	

//	
 A	
 more	
 useful	
 example,	
 however,	
 might	
 be:
define('myModule',	
 ['math',	
 'graph'],	
 function	
 (
 math,	
 graph	
)	
 {

 return	
 {

 plot:	
 function(x,	
 y){

 return	
 graph.drawPie(math.randomGrid(x,y));

 }

 };
});

The require method, on the other hand, is typically used to load code in a
top-level JavaScript file or in a module should you wish to dynamically fetch
dependencies. Here is an example of its usage:

//	
 Here,	
 the	
 'exports'	
 from	
 the	
 two	
 modules	
 loaded	
 are	
 passed	
 as
//	
 function	
 arguments	
 to	
 the	
 callback
	

require(['foo',	
 'bar'],	
 function	
 (
 foo,	
 bar	
)	
 {

 //	
 rest	
 of	
 your	
 code	
 here
});
	

//	
 And	
 here's	
 an	
 AMD-­‐example	
 that	
 shows	
 dynamically	
 loaded
//	
 dependencies
	

define(function	
 (
 require	
)	
 {

 var	
 isReady	
 =	
 false,	
 foobar;
	

 require(['foo',	
 'bar'],	
 function	
 (foo,	
 bar)	
 {

 isReady	
 =	
 true;

 foobar	
 =	
 foo()	
 +	
 bar();

 });

Smashing eBook #14│Mastering jQuery │ 100

	

 //	
 We	
 can	
 still	
 return	
 a	
 module

 return	
 {

 isReady:	
 isReady,

 foobar:	
 foobar

 };
});

The above are trivial examples of just how useful AMD modules can be, but
they should provide a foundation that helps you understand how they work.
Many big visible applications and companies currently use AMD modules as
a part of their architecture, including IBM and the BBC iPlayer. The
specification has been discussed for well over a year in both the Dojo and
CommonJS communities, so it’s had time to evolve and improve. For more
reasons on why many developers are opting to use AMD modules in their
applications, you may be interested in James Burke’s article “On Inventing
JS Module Formats and Script Loaders.”

Shortly, we’ll look at writing globally compatible modules that work with
AMD and other module formats and environments, something that offers
even more power. Before that, we need to briefly discuss a related module
format, one with a specification by CommonJS.

COMMONJS

In case you’re not familiar with it, CommonJS is a volunteer working group
that designs, prototypes and standardizes JavaScript APIs. To date, it’s
attempted to ratify standards for modules and packages. The CommonJS
module proposal specifies a simple API for declaring modules server-side;
but, as John Hann correctly states, there are really only two ways to use
CommonJS modules in the browser: either wrap them or wrap them.

Smashing eBook #14│Mastering jQuery │ 101

http://www.ibm.com/
http://www.ibm.com/
http://www.bbc.co.uk/iplayer/
http://www.bbc.co.uk/iplayer/
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://tagneto.blogspot.com/2011/04/on-inventing-js-module-formats-and.html
http://www.commonjs.org/
http://www.commonjs.org/
http://www.commonjs.org/specs/modules/1.0/
http://www.commonjs.org/specs/modules/1.0/
http://wiki.commonjs.org/wiki/Packages/1.0
http://wiki.commonjs.org/wiki/Packages/1.0

What this means is that we can either have the browser wrap modules
(which can be a slow process) or at build time (which can be fast to execute
in the browser but requires a build step).

Some developers, however, feel that CommonJS is better suited to server-
side development, which is one reason for the current disagreement over
which format should be used as the de facto standard in the pre-Harmony
age moving forward. One argument against CommonJS is that many
CommonJS APIs address server-oriented features that one would simply not
be able to implement at the browser level in JavaScript; for example, io>,
system and js could be considered unimplementable by the nature of
their functionality.

That said, knowing how to structure CommonJS modules is useful so that
we can better appreciate how they fit in when defining modules that might
be used everywhere. Modules that have applications on both the client and
server side include validation, conversion and templating engines. The way
some developers choose which format to use is to opt for CommonJS when
a module can be used in a server-side environment and to opt for AMD
otherwise.

Because AMD modules are capable of using plugins and can define more
granular things such as constructors and functions, this makes sense.
CommonJS modules are able to define objects that are tedious to work with
only if you’re trying to obtain constructors from them.

From a structural perspective, a CommonJS module is a reusable piece of
JavaScript that exports specific objects made available to any dependent
code; there are typically no function wrappers around such modules. Plenty
of great tutorials on implementing CommonJS modules are out there, but at
a high level, the modules basically contain two main parts: a variable named
exports, which contains the objects that a module makes available to
other modules, and a require function, which modules can use to import
the exports of other modules.

Smashing eBook #14│Mastering jQuery │ 102

//	
 A	
 very	
 basic	
 module	
 named	
 'foobar'
function	
 foobar(){

 this.foo	
 =	
 function(){

 console.log('Hello	
 foo');

 }
	

 this.bar	
 =	
 function(){

 console.log('Hello	
 bar');

 }
}
	

exports.foobar	
 =	
 foobar;
	

//	
 An	
 application	
 using	
 'foobar'
	

//	
 Access	
 the	
 module	
 relative	
 to	
 the	
 path
//	
 where	
 both	
 usage	
 and	
 module	
 files	
 exist
//	
 in	
 the	
 same	
 directory
	

var	
 foobar	
 =	
 require('./foobar').foobar,

 test	
 	
 	
 =	
 new	
 foobar.foo();
	

test.bar();	
 //	
 'Hello	
 bar'

There are a number of great JavaScript libraries for handling module loading
in AMD and CommonJS formats, but my preference is RequireJS (curl.js is
also quite reliable). Complete tutorials on these tools are beyond the scope
of this article, but I recommend John Hann’s post “curl.js: Yet Another AMD
Loader,” and James Burke’s post “
LABjs and RequireJS: Loading JavaScript Resources the Fun Way.”

With what we’ve covered so far, wouldn’t it be great if we could define and
load plugin modules compatible with AMD, CommonJS and other standards
that are also compatible with different environments (client-side, server-side
and beyond)? Our work on AMD and UMD (Universal Module Definition)

Smashing eBook #14│Mastering jQuery │ 103

http://requirejs.org/
http://requirejs.org/
https://github.com/unscriptable/curl
https://github.com/unscriptable/curl
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://unscriptable.com/index.php/2011/03/30/curl-js-yet-another-amd-loader/
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568
http://msdn.microsoft.com/en-us/scriptjunkie/ff943568

plugins and widgets is still at a very early stage, but we’re hoping to develop
solutions that can do just that.

One such pattern we’re working on at the moment appears below, which
has the following features:

• A core/base plugin is loaded into a $.core namespace, which can then
be easily extended using plugin extensions via the namespacing
pattern. Plugins loaded via script tags automatically populate a plugin
namespace under core (i.e. $.core.plugin.methodName()).

• The pattern can be quite nice to work with because plugin extensions
can access properties and methods defined in the base or, with a little
tweaking, override default behavior so that it can be extended to do
more.

• A loader isn’t necessarily required at all to make this pattern fully
function.

usage.html

<script	
 type="text/javascript"	
 src="http://code.jquery.com/
jquery-­‐1.6.4.min.js	
 "></script>
<script	
 type="text/javascript"	
 src="pluginCore.js"></script>
<script	
 type="text/javascript"	
 src="pluginExtension.js"></script>
	

<script	
 type="text/javascript">
	

$(function(){
	

 //	
 Our	
 plugin	
 'core'	
 is	
 exposed	
 under	
 a	
 core	
 namespace	
 in

 //	
 this	
 example,	
 which	
 we	
 first	
 cache

 var	
 core	
 =	
 $.core;
	

 //	
 Then	
 use	
 use	
 some	
 of	
 the	
 built-­‐in	
 core	
 functionality	
 to

Smashing eBook #14│Mastering jQuery │ 104

http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/jquery-1.6.4.min.js
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1

 //	
 highlight	
 all	
 divs	
 in	
 the	
 page	
 yellow

 core.highlightAll();
	

 //	
 Access	
 the	
 plugins	
 (extensions)	
 loaded	
 into	
 the	
 'plugin'

 //	
 namespace	
 of	
 our	
 core	
 module:
	

 //	
 Set	
 the	
 first	
 div	
 in	
 the	
 page	
 to	
 have	
 a	
 green	
 background.

 core.plugin.setGreen("div:first");

 //	
 Here	
 we're	
 making	
 use	
 of	
 the	
 core's	
 'highlight'	
 method

 //	
 under	
 the	
 hood	
 from	
 a	
 plugin	
 loaded	
 in	
 after	
 it
	

 //	
 Set	
 the	
 last	
 div	
 to	
 the	
 'errorColor'	
 property	
 defined	
 in

 //	
 our	
 core	
 module/plugin.	
 If	
 you	
 review	
 the	
 code	
 further	
 down,

 //	
 you'll	
 see	
 how	
 easy	
 it	
 is	
 to	
 consume	
 properties	
 and	
 methods

 //	
 between	
 the	
 core	
 and	
 other	
 plugins

 core.plugin.setRed('div:last');
});
	

</script>

pluginCore.js

//	
 Module/Plugin	
 core
//	
 Note:	
 the	
 wrapper	
 code	
 you	
 see	
 around	
 the	
 module	
 is	
 what	
 enables
//	
 us	
 to	
 support	
 multiple	
 module	
 formats	
 and	
 specifications	
 by
//	
 mapping	
 the	
 arguments	
 defined	
 to	
 what	
 a	
 specific	
 format	
 expects
//	
 to	
 be	
 present.	
 Our	
 actual	
 module	
 functionality	
 is	
 defined	
 lower
//	
 down,	
 where	
 a	
 named	
 module	
 and	
 exports	
 are	
 demonstrated.
//
//	
 Note	
 that	
 dependencies	
 can	
 just	
 as	
 easily	
 be	
 declared	
 if	
 required
//	
 and	
 should	
 work	
 as	
 demonstrated	
 earlier	
 with	
 the	
 AMD	
 module	
 examples.
	

(function	
 (
 name,	
 definition	
){

 var	
 theModule	
 =	
 definition(),

Smashing eBook #14│Mastering jQuery │ 105

 //	
 this	
 is	
 considered	
 "safe":

 hasDefine	
 =	
 typeof	
 define	
 ===	
 'function'	
 &&	
 define.amd,

 //	
 hasDefine	
 =	
 typeof	
 define	
 ===	
 'function',

 hasExports	
 =	
 typeof	
 module	
 !==	
 'undefined'	
 &&	
 module.exports;
	

 if	
 (
 hasDefine	
){	
 //	
 AMD	
 Module

 define(theModule);

 }	
 else	
 if	
 (
 hasExports	
)	
 {	
 //	
 Node.js	
 Module

 module.exports	
 =	
 theModule;

 }	
 else	
 {	
 //	
 Assign	
 to	
 common	
 namespaces	
 or	
 simply	
 the	
 global	
 object	

(window)

 (this.jQuery	
 ||	
 this.ender	
 ||	
 this.$	
 ||	
 this)[name]	
 =	
 theModule;

 }
})(
 'core',	
 function	
 ()	
 {

 var	
 module	
 =	
 this;

 module.plugins	
 =	
 [];

 module.highlightColor	
 =	
 "yellow";

 module.errorColor	
 =	
 "red";
	

 //	
 define	
 the	
 core	
 module	
 here	
 and	
 return	
 the	
 public	
 API
	

 //	
 This	
 is	
 the	
 highlight	
 method	
 used	
 by	
 the	
 core	
 highlightAll()

 //	
 method	
 and	
 all	
 of	
 the	
 plugins	
 highlighting	
 elements	
 different

 //	
 colors

 module.highlight	
 =	
 function(el,strColor){

 if(this.jQuery){

 jQuery(el).css('background',	
 strColor);

 }

 }

 return	
 {

 highlightAll:function(){

 module.highlight('div',	
 module.highlightColor);

 }

Smashing eBook #14│Mastering jQuery │ 106

 };
	

});

pluginExtension.js

//	
 Extension	
 to	
 module	
 core
	

(function	
 (
 name,	
 definition	
)	
 {

 var	
 theModule	
 =	
 definition(),

 hasDefine	
 =	
 typeof	
 define	
 ===	
 'function',

 hasExports	
 =	
 typeof	
 module	
 !==	
 'undefined'	
 &&	
 module.exports;
	

 if	
 (
 hasDefine	
)	
 {	
 //	
 AMD	
 Module

 define(theModule);

 }	
 else	
 if	
 (
 hasExports	
)	
 {	
 //	
 Node.js	
 Module

 module.exports	
 =	
 theModule;

 }	
 else	
 {	
 //	
 Assign	
 to	
 common	
 namespaces	
 or	
 simply	
 the	
 global	
 object	

(window)
	

 //	
 account	
 for	
 for	
 flat-­‐file/global	
 module	
 extensions

 var	
 obj	
 =	
 null;

 var	
 namespaces	
 =	
 name.split(".");

 var	
 scope	
 =	
 (this.jQuery	
 ||	
 this.ender	
 ||	
 this.$	
 ||	
 this);

 for	
 (var	
 i	
 =	
 0;	
 i	
 <	
 namespaces.length;	
 i++)	
 {

 var	
 packageName	
 =	
 namespaces[i];

 if	
 (obj	
 &&	
 i	
 ==	
 namespaces.length	
 -­‐	
 1)	
 {

 obj[packageName]	
 =	
 theModule;

 }	
 else	
 if	
 (typeof	
 scope[packageName]	
 ===	
 "undefined")	
 {

 scope[packageName]	
 =	
 {};

 }

 obj	
 =	
 scope[packageName];

Smashing eBook #14│Mastering jQuery │ 107

 }
	

 }
})('core.plugin',	
 function	
 ()	
 {
	

 //	
 Define	
 your	
 module	
 here	
 and	
 return	
 the	
 public	
 API.

 //	
 This	
 code	
 could	
 be	
 easily	
 adapted	
 with	
 the	
 core	
 to

 //	
 allow	
 for	
 methods	
 that	
 overwrite	
 and	
 extend	
 core	
 functionality

 //	
 in	
 order	
 to	
 expand	
 the	
 highlight	
 method	
 to	
 do	
 more	
 if	
 you	
 wish.

 return	
 {

 setGreen:	
 function	
 (
 el	
)	
 {

 highlight(el,	
 'green');

 },

 setRed:	
 function	
 (
 el	
)	
 {

 highlight(el,	
 errorColor);

 }

 };
	

});

While this is beyond the scope of this article, you may have noticed that
different types of require methods were mentioned when we discussed
AMD and CommonJS.

The concern with a similar naming convention is, of course, confusion, and
the community is currently split on the merits of a global require function.
John Hann’s suggestion here is that rather than call it require, which
would probably fail to inform users of the difference between a global and
inner require, renaming the global loader method something else might
make more sense (such as the name of the library). For this reason, curl.js
uses curl, and RequireJS uses requirejs.

This is probably a bigger discussion for another day, but I hope this brief
walkthrough of both module types has increased your awareness of these

Smashing eBook #14│Mastering jQuery │ 108

formats and has encouraged you to further explore and experiment with
them in your apps.

FURTHER READING

• “Using AMD Loaders to Write and Manage Modular JavaScript,” John
Hann

• “Demystifying CommonJS Modules,” Alex Young

• “AMD Module Patterns: Singleton,” John Hann

• Current discussion thread about AMD- and UMD-style modules for
jQuery plugins, GitHub

• “Run-Anywhere JavaScript Modules Boilerplate Code,” Kris Zyp

• “Standards And Proposals for JavaScript Modules And jQuery,” James
Burke

What Makes A Good jQuery Plugin?
At the end of the day, patterns are just one aspect of plugin development.
And before we wrap up, here are my criteria for selecting third-party plugins,
which will hopefully help developers write them.

Quality
Do your best to adhere to best practices with both the JavaScript and
jQuery that you write. Are your solutions optimal? Do they follow the jQuery
core style guidelines? If not, is your code at least relatively clean and
readable?

Compatibility
Which versions of jQuery is your plugin compatible with? Have you tested it
with the latest builds? If the plugin was written before jQuery 1.6, then it
might have issues with attributes, because the way we approach them

Smashing eBook #14│Mastering jQuery │ 109

http://unscriptable.com/code/Using-AMD-loaders/#0
http://unscriptable.com/code/Using-AMD-loaders/#0
http://dailyjs.com/2010/10/18/modules/
http://dailyjs.com/2010/10/18/modules/
http://unscriptable.com/index.php/2011/09/22/amd-module-patterns-singleton/
http://unscriptable.com/index.php/2011/09/22/amd-module-patterns-singleton/
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
https://github.com/addyosmani/jquery-plugin-patterns/issues/1
http://www.sitepen.com/blog/2010/09/30/run-anywhere-javascript-modules-boilerplate-code/
http://www.sitepen.com/blog/2010/09/30/run-anywhere-javascript-modules-boilerplate-code/
http://tagneto.blogspot.com/2010/12/standards-and-proposals-for-javascript.html
http://tagneto.blogspot.com/2010/12/standards-and-proposals-for-javascript.html
http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://docs.jquery.com/JQuery_Core_Style_Guidelines
http://docs.jquery.com/JQuery_Core_Style_Guidelines

changed with that release. New versions of jQuery offer improvements and
opportunities for the jQuery project to improve on what the core library
offers. With this comes occasional breakages (mainly in major releases) as
we move towards a better way of doing things. I’d like to see plugin authors
update their code when necessary or, at a minimum, test their plugins with
new versions to make sure everything works as expected.

Reliability
Your plugin should come with its own set of unit tests. Not only do these
prove your plugin actually works, but they can also improve the design
without breaking it for end users. I consider unit tests essential for any
serious jQuery plugin that is meant for a production environment, and
they’re not that hard to write. For an excellent guide to automated
JavaScript testing with QUnit, you may be interested in “Automating
JavaScript Testing With QUnit,” by Jorn Zaefferer.

Performance
If the plugin needs to perform tasks that require a lot of computing power or
that heavily manipulates the DOM, then you should follow best practices
that minimize this. Use jsPerf.com to test segments of your code so that
you’re aware of how well it performs in different browsers before releasing
the plugin.

Documentation
If you intend for other developers to use your plugin, ensure that it’s well
documented. Document your API. What methods and options does the
plugin support? Does it have any gotchas that users need to be aware of? If
users cannot figure out how to use your plugin, they’ll likely look for an
alternative. Also, do your best to comment the code. This is by far the best
gift you could give to other developers. If someone feels they can navigate
your code base well enough to fork it or improve it, then you’ve done a
good job.

Smashing eBook #14│Mastering jQuery │ 110

http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://bassistance.de/
http://bassistance.de/
http://jsperf.com/
http://jsperf.com/

Likelihood of maintenance
When releasing a plugin, estimate how much time you’ll have to devote to
maintenance and support. We all love to share our plugins with the
community, but you need to set expectations for your ability to answer
questions, address issues and make improvements. This can be done
simply by stating your intentions for maintenance in the README file, and let
users decide whether to make fixes themselves.

CONCLUSION

We’ve explored several time-saving design patterns and best practices that
can be employed to improve your plugin development process. Some are
better suited to certain use cases than others, but I hope that the code
comments that discuss the ins and outs of these variations on popular
plugins and widgets were useful.

Remember, when selecting a pattern, be practical. Don’t use a plugin
pattern just for the sake of it; rather, spend some time understanding the
underlying structure, and establish how well it solves your problem or fits
the component you’re trying to build. Choose the pattern that best suits your
needs.

And that’s it. If there's a particular pattern or approach you prefer taking to
writing plugins which you feel would benefit others (which hasn't been
covered), please feel free to stick it in a gist and share it in the comments
below. I'm sure it would be appreciated.

Smashing eBook #14│Mastering jQuery │ 111

http://gist.github.com/
http://gist.github.com/

jQuery Plugin Checklist: Should You Use
"at jQuery Plug-In?

Jon Raasch

jQuery plug-ins provide an excellent way to save time and streamline
development, allowing programmers to avoid having to build every
component from scratch. But plug-ins are also a wild card that introduce an
element of uncertainty into any code base. A good plug-in saves countless
development hours; a bad plug-in leads to bug fixes that take longer than
actually building the component from scratch.

Fortunately, one usually has a number of different plug-ins to choose from.
But even if you have only one, figure out whether it’s worth using at all. The
last thing you want to do is introduce bad code into your code base.

Do You Need A Plug-In At All?
The first step is to figure out whether you even need a plug-in. If you don’t,
you’ll save yourself both file size and time.

1. WOULD WRITING IT YOURSELF BE BETTER?

If the functionality is simple enough, you could consider writing it yourself.
jQuery plug-ins often come bundled with a wide variety of features, which
might be overkill for your situation. In these cases, writing any simple
functionality by hand often makes more sense. Of course, the benefits have
to be weighed against the amount of work involved.

Smashing eBook #14│Mastering jQuery │ 112

For example, jQuery UI’s accordion is great if you need advanced
functionality, but it might be overkill if you just need panels that open and
close. If you don’t already use jQuery UI elsewhere on your website,
consider instead the native jQuery slideToggle() or animate().

2. Is It Similar to a Plug-In You’re Already Using?

After discovering that a particular plug-in doesn’t handle everything you
need, finding another plug-in to cover loose ends might be tempting. But
including two similar plug-ins in the same app is a sure path to bloated
JavaScript.

Can you find a single plug-in that covers everything you need? If not, can
you extend one of the plug-ins you have to cover everything you need?
Again, in deciding whether to extend a plug-in, weigh the benefits against
the development time involved.

For example, jQuery lightbox is a nice way to enable pop-up photos in a
gallery, and simpleModal is a great way to display modal messages to users.
But why would you use both on the same website? You could easily extend
one to cover both uses. Better yet, find one plug-in that covers everything,
such as Colorbox.

3. DO YOU EVEN NEED JAVASCRIPT?

In some situations, JavaScript isn’t needed at all. CSS pseudo-selectors such
as :hover and CSS3 transitions can cover a variety of dynamic functionality
much faster than a comparable JavaScript solution. Also, many plug-ins
apply only styling; doing this with mark-up and CSS might make more sense.

For example, plug-ins such as jQuery Tooltip are indispensable if you have
dynamic content that requires well-placed tooltips. But if you use tooltips in
only a few select locations, using pure CSS is better (see this example). You
can take static tooltips a step further by animating the effect using a CSS3

Smashing eBook #14│Mastering jQuery │ 113

http://docs.jquery.com/UI/Accordion
http://docs.jquery.com/UI/Accordion
http://leandrovieira.com/projects/jquery/lightbox/
http://leandrovieira.com/projects/jquery/lightbox/
http://www.ericmmartin.com/projects/simplemodal/
http://www.ericmmartin.com/projects/simplemodal/
http://colorpowered.com/colorbox/
http://colorpowered.com/colorbox/
http://net.tutsplus.com/tutorials/html-css-techniques/css-fundametals-css-3-transitions/
http://net.tutsplus.com/tutorials/html-css-techniques/css-fundametals-css-3-transitions/
http://bassistance.de/jquery-plugins/jquery-plugin-tooltip/
http://bassistance.de/jquery-plugins/jquery-plugin-tooltip/
http://sixrevisions.com/css/css-only-tooltips/
http://sixrevisions.com/css/css-only-tooltips/

transition, but bear in mind that the animation will work only in certain
browsers.

Avoid Red Flags
When reviewing any plug-in, a number of warning signs will indicate poor
quality. Here, we’ll look at all aspects of plug-ins, from the JavaScript to the
CSS to the mark-up. We’ll even consider how plug-ins are released. None of
these red flags alone should eliminate any plug-in from consideration. You
get what you pay for, and because you’re probably paying nothing, you
should be willing to cut any one a bit of slack.

If you’re fortunate enough to have more than one option, these warning
signs could help you narrow down your choice. But even if you have only
one option, be prepared to forgo it if you see too many red flags. Save
yourself the headache ahead of time.

4. WEIRD OPTION OR ARGUMENT SYNTAX

After using jQuery for a while, developers get a sense of how most functions
accept arguments. If a plug-in developer uses unusual syntax, it stands to
reason that they don’t have much jQuery or JavaScript experience.

Some plug-ins accept a jQuery object as an argument but don’t allow
chaining from that object; for example, $.myPlugin($('a')); but not
$('a').myPlugin(); This is a big red flag.

A green flag would be a plug-in in this format…

$('.my-­‐selector').myPlugin({

 opt1	
 :	
 75,

 opt2	
 :	
 'asdf'
});

Smashing eBook #14│Mastering jQuery │ 114

… that also accepts…

$.myPlugin({

 opt1	
 :	
 75,

 opt2	
 :	
 'asdf'
},	
 $('.my-­‐selector'));

5. LITTLE TO NO DOCUMENTATION

Without documentation, a plug-in can be very difficult to use, because that is
the first place you look for answers to your questions. Documentation
comes in a variety of formats; proper documentation is best, but well-
commented code can work just as well. If documentation doesn’t exist or is
just a blog post with a quick example, then you might want to consider other
options.

Good documentation shows that the plug-in creator cares about users like
you. It also shows that they have dug into other plug-ins enough to know
the value of good documentation.

6. POOR HISTORY OF SUPPORT

Lack of support indicates that finding help will be difficult when issues arise.
More tellingly, it indicates that the plug-in has not been updated in a while.
One advantage of open-source software is all of the eye-balls that are
debugging and improving it. If the author never speaks to these people, the
plug-in won’t grow.

When was the last time the plug-in you’re considering was updated? When
was the last time a support request was answered? While not all plug-ins
need as robust a support system as the jQuery plug-ins website, be wary of
plug-ins that have never been modified.

A documented history of support, in which the author has responded to
both bug and enhancement requests, is a green flag. A support forum

Smashing eBook #14│Mastering jQuery │ 115

http://plugins.jquery.com/
http://plugins.jquery.com/

further indicates that the plug-in is well supported, if not by the author then
at least by the community.

7. NO MINIFIED VERSION

Though a fairly minor red flag, if the plug-in’s creator doesn’t provide a
minified version along with the source code, then they may not be overly
concerned with performance. Sure, you could minify it yourself, but this red
flag isn’t about wasted time: it’s about the possibility that the plug-in
contains far worse performance issues.

On the other hand, providing a minified, packed and gzipped version in the
download package is an indication that the author cares about JavaScript
performance.

8. STRANGE MARK-UP REQUIREMENTS

If a plug-in requires mark-up, then the mark-up should be of high quality. It
should make semantic sense and be flexible enough for your purposes.
Besides indicating poor front-end skills, strange mark-up makes integration
more difficult. A good plug-in plugs into just about any mark-up you use; a
bad plug-in makes you jump through hoops.

In certain situations, more rigid mark-up is needed, so be prepared to judge
this on a sliding scale. Basically, the more specific the functionality, the more
specific the mark-up needed. Completely flexible mark-up that descends
naturally from any jQuery selector is the easiest to integrate.

9. EXCESSIVE CSS

Many jQuery plug-ins come packaged with CSS, and the quality of the style
sheets is just as important as the JavaScript. An excessive number of styles
is a sure sign of bad CSS. But what constitutes “excessive” depends on the
purpose of the plug-in. Something very display-heavy, such as a lightbox or

Smashing eBook #14│Mastering jQuery │ 116

http://developer.yahoo.net/blog/archives/2007/07/high_performanc_8.html
http://developer.yahoo.net/blog/archives/2007/07/high_performanc_8.html
http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/
http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/
http://blue-anvil.com/archives/guide-to-semantic-mark-up/
http://blue-anvil.com/archives/guide-to-semantic-mark-up/

UI plug-in, will need more CSS than something that drives a simple
animation.

Good CSS styles a plug-in’s content effectively while allowing you to easily
modify the styles to fit your theme.

10. NO ONE ELSE USES IT

With the sheer volume of jQuery users, most decent plug-ins will probably
have something written about them, even if it’s a “50 jQuery [fill in the
blank]” post. Do a simple Google search for the plug-in. If you get very few
results, you might want to consider another option, unless the plug-in is
brand new or you can verifiy that it is written by a professional.

Posts on prominent blogs are great, and posts by prominent jQuery
programmers are even better.

Final Assessment
After you’ve given the plug-in the third degree, the only thing left to do is
plug it in and test how well it performs.

11. PLUG IT IN AND SEE

Probably the best way to test a plug-in is to simply plug it on the
development server and see the results. First, does it break anything? Make
sure to look at JavaScript in the surrounding areas. If the plug-in includes a
style sheet, look for layout and styling errors on any page that applies the
style sheet.

Additionally, how does the plug-in perform? If it runs slowly or the page lags
considerably when loading, it might be important to consider other options.

Smashing eBook #14│Mastering jQuery │ 117

12. BENCHMARKING WITH JSPERF

To take your performance review to the next level, run a benchmark test
using JSPerf. Benchmarking basically runs a set of operations a number of
times, and then returns an average of how long it took to execute. JSPerf
provides an easy way to test how quickly a plug-in runs. This can be a great
way to pick a winner between two seemingly identical plug-ins.

An example of a performance test run in jsPerf.

13. CROSS-BROWSER TESTING

If a plug-in comes with a lot of CSS, make sure to test the styling in all of the
browsers that you want to support. Bear in mind that CSS can be drawn
from external style sheets or from within the JavaScript itself.

Even if the plug-in doesn’t have any styling, check for JavaScript errors
across browsers anyway (at least in the earliest version of IE that you
support). jQuery’s core handles most cross-browser issues, but plug-ins
invariably use some amount of pure JavaScript, which tends to break in
older browsers.

14. UNIT TESTING

Finally, you may want to consider taking cross-browser testing even further
with unit tests. Unit testing provides a simple way to test individual
components of a plug-in in any browser or platform you want to support. If

Smashing eBook #14│Mastering jQuery │ 118

http://jsperf.com/
http://jsperf.com/
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing

the plug-in’s author has included unit tests in their release, you can bet that
all components of the plug-in will work across browsers and platforms.

Unfortunately, very few plug-ins include unit test data, but that doesn’t mean
you can’t perform your own test using the QUnit plug-in.

With minimal set-up, you can test whether the plug-in methods return the
desired results. If any test fails, don’t waste your time with the plug-in. In
most cases, performing your own unit tests is overkill, but QUnit helps you
determine the quality of a plug-in when it really counts. For more information
on how to use QUnit, see this tutorial

An example of a unit test run in QUnit.

Smashing eBook #14│Mastering jQuery │ 119

http://docs.jquery.com/QUnit
http://docs.jquery.com/QUnit
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-test-your-javascript-code-with-qunit/
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-test-your-javascript-code-with-qunit/

Conclusion
When assessing the quality of a jQuery plug-in, look at all levels of the code.
Is the JavaScript optimized and error-free? Is the CSS tuned and effective?
Does the mark-up make semantic sense and have the flexibility you need?
These questions all lead to the most important question: will this plug-in be
easy to use?

jQuery core has been optimized and bug-checked not only by the core team
but by the entire jQuery community. While holding jQuery plug-ins to the
same standard would be unfair, they should stand up to at least some of that
same scrutiny.

Smashing eBook #14│Mastering jQuery │ 120

"e Authors

Addy Osmani
Addy Osmani is a JavaScript blogger & UI Developer for AOL based in
London, England. He is also a member of the jQuery [Bug Triage/Docs/
Front-end] teams where he assists with bugs, documentation and
community updates. Most recently he's been nominated for the .net 'Brilliant
Newcomer' award.

Andy Croxall
Andy Croxall is a Web developer from Wandsworth, London, England. He is
a Javascript specialist and is an active member of the jQuery community,
posting plugins and extensions. He has worked for clients ranging from the
London Stock Exchange to Durex. You can keep up with him and his
projects and creations on his website, mitya.co.uk.

Jon Raasch
Jon Raasch is the author of the book Smashing Webkit. He's a
freelance front-end web developer and UI designer with endless love for
jQuery, CSS3, HTML5 and performance tuning. Follow him
on Twitter or read his blog.

Smashing eBook #14│Mastering jQuery │ 121

http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.thenetawards.com/#num12
http://www.mitya.co.uk/
http://www.mitya.co.uk/
http://www.amazon.com/Smashing-WebKit-Magazine-Book/dp/1119999138
http://www.amazon.com/Smashing-WebKit-Magazine-Book/dp/1119999138
http://jonraasch.com/
http://jonraasch.com/
http://twitter.com/jonraasch
http://twitter.com/jonraasch
http://jonraasch.com/blog/
http://jonraasch.com/blog/

Tommy Saylor
Tommy is some sort of designer/developer hybrid. He currently lives in
Dallas, Texas, USA, and works for BubbleLife Media. His goal in life: Be
Creative, Be Happy.

Smashing eBook #14│Mastering jQuery │ 122

http://www.bubblelifemedia.com/
http://www.bubblelifemedia.com/

